Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Am J Physiol Cell Physiol ; 326(5): C1410-C1422, 2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38525541

RESUMO

Adipose dysfunction in lipodystrophic SEIPIN deficiency is associated with multiple metabolic disorders and increased risks of developing cardiovascular diseases, such as atherosclerosis, cardiac hypertrophy, and heart failure. Recently, adipose transplantation has been found to correct adipose dysfunction and metabolic disorders in lipodystrophic Seipin knockout mice; however, whether adipose transplantation could improve lipodystrophy-associated cardiovascular consequences is still unclear. Here, we aimed to explore the effects of adipose transplantation on lipodystrophy-associated metabolic cardiovascular diseases in Seipin knockout mice crossed into atherosclerosis-prone apolipoprotein E (Apoe) knockout background. At 2 months of age, lipodystrophic Seipin/Apoe double knockout mice and nonlipodystrophic Apoe knockout controls were subjected to adipose transplantation or sham operation. Seven months later, mice were euthanized. Our data showed that although adipose transplantation had no significant impact on endogenous adipose atrophy or gene expression, it remarkably increased plasma leptin but not adiponectin concentration in Seipin/Apoe double knockout mice. This led to significantly reduced hyperlipidemia, hepatic steatosis, and insulin resistance in Seipin/Apoe double knockout mice. Consequently, atherosclerosis burden, intraplaque macrophage infiltration, and aortic inflammatory gene expression were all attenuated in Seipin/Apoe double knockout mice with adipose transplantation. However, adipocyte morphology, macrophage infiltration, or fibrosis of the perivascular adipose tissue was not altered in Seipin/Apoe double knockout mice with adipose transplantation, followed by no significant improvement of vasoconstriction or relaxation. In conclusion, we demonstrate that adipose transplantation could alleviate lipodystrophy-associated metabolic disorders and atherosclerosis but has an almost null impact on perivascular adipose abnormality or vascular dysfunction in lipodystrophic Seipin/Apoe double knockout mice.NEW & NOTEWORTHY Adipose transplantation (AT) reverses multiply metabolic derangements in lipodystrophy, but whether it could improve lipodystrophy-related cardiovascular consequences is unknown. Here, using Seipin/Apoe double knockout mice as a lipodystrophy disease model, we showed that AT partially restored adipose functionality, which translated into significantly reduced atherosclerosis. However, AT was incapable of reversing perivascular adipose abnormality or vascular dysfunction. The current study provides preliminary experimental evidence on the therapeutic potential of AT on lipodystrophy-related metabolic cardiovascular diseases.


Assuntos
Tecido Adiposo , Aterosclerose , Subunidades gama da Proteína de Ligação ao GTP , Lipodistrofia , Camundongos Knockout , Animais , Camundongos , Tecido Adiposo/metabolismo , Tecido Adiposo/transplante , Apolipoproteínas E/genética , Apolipoproteínas E/deficiência , Apolipoproteínas E/metabolismo , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Subunidades gama da Proteína de Ligação ao GTP/deficiência , Subunidades gama da Proteína de Ligação ao GTP/genética , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/genética , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Resistência à Insulina , Leptina/sangue , Leptina/metabolismo , Lipodistrofia/metabolismo , Lipodistrofia/genética , Lipodistrofia/patologia , Camundongos Endogâmicos C57BL
2.
J Am Chem Soc ; 146(18): 12656-12663, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38683724

RESUMO

Tumor-associated mast cells (TAMCs) have been recently revealed to play a multifaceted role in the tumor microenvironment. Noninvasive optical imaging of TAMCs is thus highly desired to gain insights into their functions in cancer immunotherapy. However, due to the lack of a single enzyme that is specific to mast cells, a common probe design approach based on single-enzyme activation is not applicable. Herein, we reported a bienzyme-locked molecular probe (THCMC) based on a photoinduced electron transfer-intramolecular charge-transfer hybrid strategy for in vivo imaging of TAMCs. The bienzyme-locked activation mechanism ensures that THCMC exclusively turns on near-infrared (NIR) fluorescence only in the presence of both tryptase and chymase specifically coexpressed by mast cells. Thus, THCMC effectively distinguishes mast cells from other leukocytes, including T cells, neutrophils, and macrophages, a capability lacking in single-locked probes. Such a high specificity of THCMC allows noninvasive tracking of the fluctuation of TAMCs in the tumor of living mice during cancer immunotherapy. The results reveal that the decreased intratumoral signal of THCMC after combination immunotherapy correlates well with the reduced population of TAMCs, accurately predicting the inhibition of tumor growth. Thus, this study not only presents the first NIR fluorescent probe specific for TAMCs but also proposes a generic bienzyme-locked probe design approach for in vivo cell imaging.


Assuntos
Corantes Fluorescentes , Mastócitos , Imagem Óptica , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Animais , Camundongos , Triptases/metabolismo , Humanos , Quimases/metabolismo , Neoplasias/diagnóstico por imagem , Linhagem Celular Tumoral
3.
J Am Chem Soc ; 146(25): 17393-17403, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38860693

RESUMO

Dual-locked activatable optical probes, leveraging the orthogonal effects of two biomarkers, hold great promise for the specific imaging of biological processes. However, their design approaches are limited to a short-distance energy or charge transfer mechanism, while the signal readout relies on fluorescence, which inevitably suffers from tissue autofluorescence. Herein, we report a long-distance singlet oxygen transfer approach to develop a bienzyme-locked activatable afterglow probe (BAAP) that emits long-lasting self-luminescence without real-time light excitation for the dynamic imaging of an intratumoral granule enzyme. Composed of an immuno-biomarker-activatable singlet oxygen (1O2) donor and a cancer-biomarker-activatable 1O2 acceptor, BAAP is initially nonafterglow. Only in the presence of both immune and cancer biomarkers can 1O2 be generated by the activated donor and subsequently diffuse toward the activated acceptor, resulting in bright near-infrared afterglow with a high signal-to-background ratio and specificity toward an intratumoral granule enzyme. Thus, BAAP allows for real-time tracking of tumor-infiltrating cytotoxic T lymphocytes, enabling the evaluation of cancer immunotherapy and the differentiation of tumor from local inflammation with superb sensitivity and specificity, which are unachievable by single-locked probes. Thus, this study not only presents the first dual-locked afterglow probe but also proposes a new design way toward dual-locked probes via reactive oxygen species transfer processes.


Assuntos
Imagem Óptica , Oxigênio Singlete , Oxigênio Singlete/metabolismo , Oxigênio Singlete/química , Humanos , Corantes Fluorescentes/química , Animais , Camundongos , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Neoplasias/diagnóstico por imagem
4.
Angew Chem Int Ed Engl ; 63(30): e202405358, 2024 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-38700137

RESUMO

Eosinophils are important immune effector cells that affect T cell-mediated antitumor immunity. However, the low frequency and restrained activity of eosinophils restricted the outcome of cancer immunotherapies. We herein report an eosinophil-activating semiconducting polymer nanoparticle (SPNe) to improve photodynamic tumor immunogenicity, modulate eosinophil chemotaxis, and reinvigorate T-cell immunity for activated cancer photo-immunotherapy. SPNe comprises an amphiphilic semiconducting polymer and a dipeptidyl peptidase 4 (DPP4) inhibitor sitagliptin via a 1O2-cleavable thioketal linker. Upon localized NIR photoirradiation, SPNe generates 1O2 to elicit immunogenic cell death of tumors and induce specific activation of sitagliptin. The subsequent inhibition of DPP4 increases intratumoral CCL11 levels to promote eosinophil chemotaxis and activation. SPNe-mediated photo-immunotherapy synergized with immune checkpoint blockade greatly promotes tumor infiltration and activation of both eosinophils and T cells, effectively inhibiting tumor growth and metastasis. Thus, this study presents a generic polymeric nanoplatform to modulate specific immune cells for precision cancer immunotherapy.


Assuntos
Eosinófilos , Imunoterapia , Nanopartículas , Polímeros , Nanopartículas/química , Polímeros/química , Polímeros/farmacologia , Camundongos , Animais , Eosinófilos/efeitos dos fármacos , Eosinófilos/metabolismo , Eosinófilos/imunologia , Semicondutores , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Neoplasias/patologia , Fotoquimioterapia , Linhagem Celular Tumoral , Antineoplásicos/química , Antineoplásicos/farmacologia
5.
Angew Chem Int Ed Engl ; 63(21): e202319780, 2024 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-38523406

RESUMO

Tumor-associated macrophages (TAMs) play a role in both pro- and anti-tumor functions; and the targeted polarization from M2 to M1 TAMs has become an effective therapy option. Although detection of M1 TAMs is imperative to assess cancer immunotherapeutic efficacy, existing optical probes suffer from shallow tissue penetration depth and poor specificity toward M1 TAMs. Herein, we report a tandem-locked NIR chemiluminescent (CL) probe for specific detection of M1 TAMs. Through a combined molecular engineering approach via both atomic alternation and introduction of electron-withdrawing groups, near-infrared (NIR) chemiluminophores are screened out to possess record-long emission (over 800 nm), record-high CL quantum yield (2.7 % einstein/mol), and prolonged half-life (7.7 h). Based on an ideal chemiluminophore, the tandem-locked probe (DPDGN) is developed to only activate CL signal in the presence of both tumour (γ-glutamyl transpeptidase) and M1 macrophage biomarkers (nitric oxide). Such a tandem-lock design ensures its high specificity towards M1 macrophages in the tumor microenvironment over those in normal tissues or peripheral blood. Thus, DPDGN permits noninvasive imaging and tracking of M1 TAM in the tumor of living mice during R837 treatment, showing a good correlation with ex vivo methods. This study not only reports a new molecular approach towards highly efficient chemiluminophores but also reveals the first tandem-locked CL probes for enhanced imaging specificity.


Assuntos
Macrófagos Associados a Tumor , Animais , Camundongos , Imagem Óptica , Humanos , Substâncias Luminescentes/química , Medições Luminescentes
6.
Arch Microbiol ; 206(1): 3, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37991548

RESUMO

Psoriasis is one of the common chronic inflammatory skin diseases worldwide. The skin microbiota plays a role in psoriasis through regulating skin homeostasis. However, the studies on the interactions between symbiotic microbial strains and psoriasis are limited. In this study, Staphylococcus strain XSB102 was isolated from the skin of human, which was identified as Staphylococcus warneri using VITEK2 Compact. To reveal the roles of Staphylococcus warneri on psoriasis, XSB102 were applied on the back of imiquimod-induced psoriasis-like dermatitis mice. The results indicated that it exacerbated the psoriasis and significantly increased the thickening of the epidermis. Furthermore, in vitro experiments confirmed that inactivated strain XSB102 could promote the proliferation of human epidermal keratinocytes (HaCaT) cell. However, real-time quantitative PCR and immunofluorescence results suggested that the expression of inflammatory factors such as IL-17a, IL-6, and so on were not significantly increased, while extracellular matrix related factors such as Col6a3 and TGIF2 were significantly increased after XSB102 administration. This study indicates that Staphylococcus warneri XSB102 can exacerbate psoriasis and promote keratinocyte proliferation independently of inflammatory factors, which paves the way for further exploration of the relationship between skin microbiota and psoriasis.


Assuntos
Dermatite , Psoríase , Camundongos , Humanos , Animais , Imiquimode/efeitos adversos , Imiquimode/metabolismo , Psoríase/induzido quimicamente , Psoríase/metabolismo , Pele , Queratinócitos/metabolismo , Staphylococcus/genética , Proliferação de Células , Dermatite/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C , Proteínas Repressoras/metabolismo , Proteínas de Homeodomínio/efeitos adversos , Proteínas de Homeodomínio/metabolismo
7.
Angew Chem Int Ed Engl ; 62(40): e202308362, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37587095

RESUMO

Cytokine therapy mediates the interaction between immune cells and non-immune cells in the tumor microenvironment (TME), forming a promising approach in cancer therapy. However, the dose-dependent adverse effects and non-selective stimulation of cytokines limit their clinical use. We herein report a sonodynamic cytokine nano-immunocomplex (SPNAI ) that specifically activates effector T cells (Teffs) for antitumor immunotherapy. By conjugating anti-interleukin-2 (anti-IL-2) antibodies S4B6 on the semiconducting polymer nanoparticles to afford SPNA , this nanoantibody SPNA can bind with IL-2 to form SPNAI which can block the interaction between IL-2 and regulatory T cells (Tregs), selectively activating Teffs in TME. Moreover, SPNAI generates 1 O2 to trigger immunogenic cell death of cancer cells upon sono-irradiation, which promotes the maturation of dendritic cells and the proliferation of Teffs. This SPNAI -mediated combination sonodynamic immunotherapy thus elevates the ratio of Teffs/Tregs in TME, resulting in inhibition of tumor growth, suppression of lung metastasis and prevention of tumor relapse.


Assuntos
Citocinas , Neoplasias , Humanos , Citocinas/metabolismo , Interleucina-2 , Linfócitos T Reguladores/metabolismo , Imunoterapia/métodos , Neoplasias/tratamento farmacológico , Microambiente Tumoral , Linhagem Celular Tumoral
8.
Angew Chem Int Ed Engl ; 62(43): e202310178, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37671691

RESUMO

Sono-immunotherapy holds great potential for deep tumor inhibition; however, smart sono-therapeutic agents to simultaneously eliminate 'domestic' tumor cells and regulate the 'community' tumor immune microenvironment have rarely been developed. Herein, we report a spatiotemporally controllable semiconducting iron-chelated nano-metallomodulator (SINM) for hypersensitive sono-metallo-immunotherapy of cancer. SINM consists of a semiconducting polymer (SP) backbone chelating iron ions (Fe3+ ) with thiophene-based Schiff base structure, and a hydrophilic side chain. Upon accumulation in tumors after systemic administration, SINM specifically arouses ferroptosis and M1 macrophage polarization due to its response toward the tumor redox environment; meanwhile, the chelation of Fe3+ enhances the sono-sensitizing effect of SPs, leading to enhanced generation of reactive oxygen species for immunogenic cell death. Such combined sonodynamic metallo-immunotherapy of SINM efficiently ablates deep tumor and spatiotemporally regulates immunophenotypes.


Assuntos
Quelantes de Ferro , Neoplasias , Humanos , Quelantes de Ferro/farmacologia , Quelantes de Ferro/uso terapêutico , Fatores Imunológicos , Adjuvantes Imunológicos , Neoplasias/tratamento farmacológico , Imunoterapia , Ferro , Linhagem Celular Tumoral , Microambiente Tumoral
9.
Angew Chem Int Ed Engl ; 62(32): e202307272, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37312610

RESUMO

The efficacy of combination immunotherapy has been limited by tumor specificity and immune-related adverse events (irAEs). Herein, we report the development of polymeric STING pro-agonists (PSPA), whose sono-immunotherapeutic efficacy is activated by sono-irradiation and elevated glutathione (GSH) within the tumor microenvironment (TME). PSPA is composed of sonosensitizers (semiconducting polymer) and STING agonists (MSA-2) via the GSH-activatable linkers. Under sono-irradiation, PSPA serves as a sonosensitizer to generate 1 O2 and induce immunogenic cell death (ICD) of malignant tumor cells. Furthermore, MSA-2 is released specifically in tumor microenvironment with highly expressed GSH, minimizing off-target side effects. The activation of the STING pathway elevates the interferon-ß level and synergizes with SDT to enhance the anti-tumor response. Therefore, this work proposes a universal approach for spatiotemporal regulation of cancer sono-immunotherapy.


Assuntos
Glutationa , Neoplasias , Humanos , Morte Celular Imunogênica , Imunoterapia , Polímeros , Microambiente Tumoral , Neoplasias/terapia , Linhagem Celular Tumoral
10.
Angew Chem Int Ed Engl ; 62(12): e202217339, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36694443

RESUMO

Cancer immunotherapy has shown tremendous potential to train the intrinsic immune system against malignancy in the clinic. However, the extracellular matrix (ECM) in tumor microenvironment is a formidable barrier that not only restricts the penetration of therapeutic drugs but also prevents the infiltration of antitumor immune cells. We herein report a semiconducting polymer-based ECM nanoremodeler (SPNcb) to combine photodynamic antitumor activity with cancer-specific inhibition of collagen-crosslinking enzymes (lysyl oxidase (LOX) family) for activatable cancer photo-immunotherapy. SPNcb is self-assembled from an amphiphilic semiconducting polymer conjugated with a LOX inhibitor (ß-aminopropionitrile, BAPN) via a cancer biomarker (cathepsin B, CatB)-cleavable segment. BAPN can be exclusively activated to inhibit LOX activity in the presence of the tumor-overexpressed CatB, thus blocking collagen crosslinking and decreasing ECM stiffness. Such an ECM nanoremodeler synergizes immunogenic phototherapy and checkpoint blockade immunotherapy to improve the tumor infiltration of cytotoxic T cells, inhibiting tumor growth and metastasis.


Assuntos
Aminopropionitrilo , Neoplasias , Aminopropionitrilo/farmacologia , Matriz Extracelular , Colágeno , Imunoterapia , Neoplasias/patologia
11.
Opt Express ; 28(11): 16834-16844, 2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32549497

RESUMO

The terahertz (THz) metamaterial biosensor has great potential for label-free and rapid specificity testing. Here, we designed two highly sensitive structures to detect the carcinoembryonic antigen (CEA) of the cancer biomarker in early stages. There was about 29 GHz (500 ng/ml) resonance shift for CEA with an insert grate metamaterial, which was consistent with simulation results. Moreover, the concentration of CEA was gained through the relationship between the cancer marker concentration and frequency shift (Δƒ). Our design and detection methods may provide a potential route for the early warning stages of cancer.


Assuntos
Técnicas Biossensoriais/instrumentação , Antígeno Carcinoembrionário/análise , Óptica e Fotônica/instrumentação , Biomarcadores Tumorais/sangue , Antígeno Carcinoembrionário/sangue , Simulação por Computador , Desenho de Equipamento , Humanos , Silício/química , Fatores de Tempo
12.
Phytopathology ; 110(12): 1923-1933, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32689905

RESUMO

The infection processes of Ceratocystis fimbriata BMPZ13 (BMPZ13) was elucidated on vegetative tissues of sweetpotato plants employing light and scanning electron microscopy. Vegetative tissues infected with C. fimbriata BMPZ13 by either wounding or nonwounding inoculation methods developed typical disease symptoms, establishing black rot in stems and necrosis on buds, young leaves, and stems of sprouts, in addition to wilt on leaves and shoot cuttings, typical of vascular associated diseases. The runner hyphae of C. fimbriata BMPZ13 formed from germinated conidia were able to directly penetrate the epidermal cuticle for initial infection and invade sweetpotato peltate glandular trichomes, specialized secretory structures to store and secrete metabolites. A two-step biotrophic phase was observed with nonwounding inoculation on leaves and stems, featuring both intercellular and intracellular invasive hyphae, with the latter found within living cells of the leaf epidermis. Subsequent to the biotrophic phase was a necrotrophic phase displaying cell death in infected leaves and veins. Additionally, this cell death was an iron-associated ferroptosis, supporting the notion that iron is involved in the necrotrophic phase of C. fimbriata BMPZ13 infection. Significantly, we establish that C. fimbriata employs a unique infection strategy: the targeting of peltate glandular trichomes. Collectively, our findings show that C. fimbriata is a plant fungal pathogen with a hemibiotrophic infection style in sweetpotato vegetative tissues.


Assuntos
Ascomicetos , Infecções , Ipomoea batatas , Ceratocystis , Humanos , Doenças das Plantas , Tricomas
13.
Plant Cell Environ ; 41(7): 1645-1656, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29645276

RESUMO

Light signals are perceived by multiple photoreceptors that converge to suppress the RING E3 ubiquitin ligase CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) for the regulation of stomatal development. Thus, COP1 is a point of integration between light signaling and stomatal patterning. However, how light signaling is collected into COP1 for the production and spacing of stomata is still unknown. Here, we report that the loss-of-function mutant of ANGUSTIFOLIA3 (AN3) delays asymmetric cell division, which leads to decreased stomatal index. Furthermore, overexpression of AN3 accelerates asymmetric cell division, which results in clusters of stomata. In addition, the stomatal development through AN3 regulation is mediated by light signaling. Finally, we find that an3 is a light-signaling mutant, and that AN3 protein is light regulated. Self-activation by AN3 contributes to the control of AN3 expression. Thus, AN3 is a point of collection between light signaling and stomatal patterning. Target-gene analysis indicates that AN3 is associated with COP1 promoter for the regulation of light-controlling stomatal development. Together, these components for regulating stomatal development form an AN3-COP1-E3 ubiquitin ligase complex, allowing the integration of light signaling into the production and spacing of stomata.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Estômatos de Plantas/crescimento & desenvolvimento , Transativadores/fisiologia , Ubiquitina-Proteína Ligases/fisiologia , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Arabidopsis/efeitos da radiação , Hipocótilo/metabolismo , Hipocótilo/fisiologia , Luz , Microscopia Confocal , Estômatos de Plantas/metabolismo , Estômatos de Plantas/efeitos da radiação , Reação em Cadeia da Polimerase em Tempo Real
14.
Nat Prod Res ; : 1-6, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38419300

RESUMO

Euphorhypenoids A (1) and B (2), two new dammarane-type triterpenoids, along with four known tetracyclic triterpenoids (3-6), were isolated from the whole plant of Euphorbia hypericifolia. The structures of new compounds were mainly elucidated by a series of extensive spectroscopic methods, including HR-ESI-MS, NMR, IR, and UV. Compound 1 exhibited significant inhibitory effect on platelet aggregation at concentrations of 10 - 200 µM.

15.
Adv Mater ; 36(25): e2400762, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38445783

RESUMO

Combination cancer immunotherapy based on electromagnetic energy and immunotherapy shows potent anti-cancer efficacy. However, as a factor that mediates tumor metastasis and immune suppression, the impact of tumor exosomes on therapy under electromagnetic energy stimulation remains unclear. Herein, findings indicate that sonodynamic therapy (SDT) increases serum exosome levels by inducing apoptotic exosomes and loosening the tumor extracellular matrix, promoting lung metastasis. To address this problem, an exosome-inhibiting polymeric sonosensitizer (EIPS) selectively inhibiting tumor exosome generation in response to the tumor biomarker is synthesized. EIPS consists of a semiconducting polymer backbone capable of inducing SDT and a poly(ethylene glycol) layer conjugated with a tumor-specific enzyme-responsive exosome inhibitor prodrug. After being cleaved by tumor Cathepsin B, EIPS releases active exosome inhibitors, preventing tumor exosome-mediated immune suppression and lung metastasis. As a result, EIPS elicits robust antitumor effects through the synergistic effect of SDT and tumor exosome inhibition, completely preventing lung metastasis and establishing a long-term immune memory effect. This is the first example showing that combining SDT with tumor-specific exosome inhibition can elicit a potent immune response without the help of typical immune agonists.


Assuntos
Exossomos , Imunoterapia , Neoplasias Pulmonares , Exossomos/metabolismo , Exossomos/química , Animais , Camundongos , Linhagem Celular Tumoral , Humanos , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/tratamento farmacológico , Terapia por Ultrassom/métodos , Polímeros/química , Polietilenoglicóis/química , Neoplasias/terapia
16.
Sci Rep ; 14(1): 7405, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548865

RESUMO

As a major carbon emitter, the power sector plays a crucial role in realizing the goal of carbon peaking and carbon neutrality. This study constructed a low-carbon power system based on the LEAP model (LEAP-GBA) with 2020 as a statistic base aiming of exploring the low-carbon transformation pathway of the power sector in the Guangdong-Hong Kong, and Macao Greater Bay Area (GBA). Five scenarios are set up to simulate the demand, power generation structure, carbon emissions, and power generation costs in the power sector under different scenarios. The results indicate that total electricity demand will peak after 2050, with 80% of it coming from industry, buildings and residential use. To achieve net-zero emissions from the power sector in the GBA, a future power generation mix dominated by nuclear and renewable energy generation and supplemented by fossil energy generation equipped with CCUS technologies. BECCS technology and nuclear power are the key to realize zero carbon emissions from the power sector in the GBA, so it should be the first to promote BECCS technology testing and commercial application, improve the deployment of nuclear power sites, and push forward the construction of nuclear power and technology improvement in the next 40 years.

17.
Adv Mater ; 36(25): e2314084, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38446383

RESUMO

Although colorectal cancer diagnosed at an early stage shows high curability, methods simultaneously possessing point-of-care testing ability and high sensitivity are limited. Here, an orally deliverable biomarker-activatable probe (termed as HATS) for early detection of orthotopic tumors via remote urinalysis is presented. To enable its oral delivery to the colon, HATS is designed to have remarkable resistance to acidity and digestive enzymes in the stomach and small intestine and negligible intestinal absorption. Upon reaction with a cancer biomarker in the colon segment, HATS releases a small fragment of tetrazine that can transverse the intestinal barrier, enter blood circulation, and ultimately undergo renal clearance to urine. Subsequently, the urinary tetrazine fragment is detected by bioorthogonal reaction with trans-cyclooctene-caged resorufin (TCO-Reso) to afford a rapid and specific fluorescence enhancement of TCO-Reso. Such signal readout is correlated with the urinary tetrazine concentration and thus measures the level of cancer biomarkers in the colon. HATS-based optical urinalysis detects orthotopic colon tumors two weeks earlier than clinical serological tests and can be developed to a point-of-care paper test. Thereby, HATS-based urinalysis provides a non-invasive and sensitive approach to cancer screening at low-resource settings.


Assuntos
Biomarcadores Tumorais , Biomarcadores Tumorais/urina , Animais , Camundongos , Humanos , Neoplasias Gastrointestinais/diagnóstico , Neoplasias Gastrointestinais/urina , Urinálise/métodos , Linhagem Celular Tumoral , Detecção Precoce de Câncer/métodos , Corantes Fluorescentes/química , Administração Oral
18.
Ann Med ; 56(1): 2399759, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39258876

RESUMO

BACKGROUND: The status of BRCA1/2 genes plays a crucial role in the treatment decision-making process for multiple cancer types. However, due to high costs and limited resources, a demand for BRCA1/2 genetic testing among patients is currently unmet. Notably, not all patients with BRCA1/2 mutations achieve favorable outcomes with poly (ADP-ribose) polymerase inhibitors (PARPi), indicating the necessity for risk stratification. In this study, we aimed to develop and validate a multimodal model for predicting BRCA1/2 gene status and prognosis with PARPi treatment. METHODS: We included 1695 slides from 1417 patients with ovarian, breast, prostate, and pancreatic cancers across three independent cohorts. Using a self-attention mechanism, we constructed a multi-instance attention model (MIAM) to detect BRCA1/2 gene status from hematoxylin and eosin (H&E) pathological images. We further combined tissue features from the MIAM model, cell features, and clinical factors (the MIAM-C model) to predict BRCA1/2 mutations and progression-free survival (PFS) with PARPi therapy. Model performance was evaluated using area under the curve (AUC) and Kaplan-Meier analysis. Morphological features contributing to MIAM-C were analyzed for interpretability. RESULTS: Across the four cancer types, MIAM-C outperformed the deep learning-based MIAM in identifying the BRCA1/2 genotype. Interpretability analysis revealed that high-attention regions included high-grade tumors and lymphocytic infiltration, which correlated with BRCA1/2 mutations. Notably, high lymphocyte ratios appeared characteristic of BRCA1/2 mutations. Furthermore, MIAM-C predicted PARPi therapy response (log-rank p < 0.05) and served as an independent prognostic factor for patients with BRCA1/2-mutant ovarian cancer (p < 0.05, hazard ratio:0.4, 95% confidence interval: 0.16-0.99). CONCLUSIONS: The MIAM-C model accurately detected BRCA1/2 gene status and effectively stratified prognosis for patients with BRCA1/2 mutations.


Assuntos
Mutação , Inibidores de Poli(ADP-Ribose) Polimerases , Humanos , Feminino , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Masculino , Proteína BRCA1/genética , Proteína BRCA2/genética , Prognóstico , Pessoa de Meia-Idade , Intervalo Livre de Progressão , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Terapia de Alvo Molecular/métodos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/tratamento farmacológico , Adulto
19.
Pathol Res Pract ; 260: 155449, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38981345

RESUMO

Parathyroid carcinoma(PC) is an extremely rare malignant tumor of the parathyroid glands. The lung is the most common target organ for PC distant metastases. In this study, twelve patients diagnosed with PC with lung metastases were enrolled in the study. Hematoxylin and Eosin(H&E) stained, immunohistochemical stained and next-generation sequencing (NGS) of a 425-gene panel were performed on tumor tissue samples. At the same time, we also evaluated its histopathologic characteristics. The results indicate that the microscopic examination of metastatic lesions reveals the same structure and characteristics as PC; the tumor was composed of relatively uniform cells organized in nests and separated by thin fibrous bands and abundant blood vessels. Immunohistochemical evaluation of Ki67, CyclinD1, PTH, SYN, CgA, and CD56 was useful in diagnosing PC with lung metastases. The most frequently genetic alterations were mutations of CDC73 and copy number variation (CNV) of MCL1, with a mutation rate of 25 %. In addition, the mutations of CDC73, ATM, TP53, ALK, ERBB2, MAP3K4, TSC1, CCND1 and CNV of CDK4, MCL1, SMARCB1 overlap between metastatic lesions and primary lesions. In conclusions, PC is a rare endocrine malignant tumor that is very difficult to diagnose preoperatively and prone to clinical recurrence or distant metastasis. Genetic mutations, presentation and histological characteristic were the basis for diagnosing PC with lung metastases.


Assuntos
Neoplasias Pulmonares , Neoplasias das Paratireoides , Humanos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Neoplasias Pulmonares/genética , Neoplasias das Paratireoides/patologia , Neoplasias das Paratireoides/genética , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Idoso , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/análise , Mutação , Sequenciamento de Nucleotídeos em Larga Escala
20.
Adv Mater ; 35(6): e2208553, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36427459

RESUMO

Checkpoint immunotherapy holds great potential to treat malignancies via blocking the immunosuppressive signaling pathways, which however suffers from inefficiency and off-target adverse effects. Herein, checkpoint nano-proteolysis targeting chimeras (nano-PROTACs) in combination with photodynamic tumor regression and immunosuppressive protein degradation to block checkpoint signaling pathways for activatable cancer photo-immunotherapy are reported. These nano-PROTACs are composed of a photosensitizer (protoporphyrin IX, PpIX) and an Src homology 2 domain-containing phosphatase 2 (SHP2)-targeting PROTAC peptide (aPRO) via a caspase 3-cleavable segment. aPRO is activated by the increased expression of caspase 3 in tumor cells after phototherapeutic treatment and induces targeted degradation of SHP2 via the ubiquitin-proteasome system. The persistent depletion of SHP2 blocks the immunosuppressive checkpoint signaling pathways (CD47/SIRPα and PD-1/PD-L1), thus reinvigorating antitumor macrophages and T cells. Such a checkpoint PROTAC strategy synergizes immunogenic phototherapy to boost antitumor immune response. Thus, this study represents a generalized PROTAC platform to modulate immune-related signaling pathways for improved anticancer therapy.


Assuntos
Imunoterapia , Neoplasias , Humanos , Caspase 3 , Neoplasias/tratamento farmacológico , Macrófagos/metabolismo , Imunossupressores/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa