Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Nature ; 630(8015): 206-213, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38778111

RESUMO

Targeted radionuclide therapy, in which radiopharmaceuticals deliver potent radionuclides to tumours for localized irradiation, has addressed unmet clinical needs and improved outcomes for patients with cancer1-4. A therapeutic radiopharmaceutical must achieve both sustainable tumour targeting and fast clearance from healthy tissue, which remains a major challenge5,6. A targeted ligation strategy that selectively fixes the radiopharmaceutical to the target protein in the tumour would be an ideal solution. Here we installed a sulfur (VI) fluoride exchange (SuFEx) chemistry-based linker on radiopharmaceuticals to prevent excessively fast tumour clearance. When the engineered radiopharmaceutical binds to the tumour-specific protein, the system undergoes a binding-to-ligation transition and readily conjugates to the tyrosine residues through the 'click' SuFEx reaction. The application of this strategy to a fibroblast activation protein (FAP) inhibitor (FAPI) triggered more than 80% covalent binding to the protein and almost no dissociation for six days. In mice, SuFEx-engineered FAPI showed 257% greater tumour uptake than did the original FAPI, and increased tumour retention by 13-fold. The uptake in healthy tissues was rapidly cleared. In a pilot imaging study, this strategy identified more tumour lesions in patients with cancer than did other methods. SuFEx-engineered FAPI also successfully achieved targeted ß- and α-radionuclide therapy, causing nearly complete tumour regression in mice. Another SuFEx-engineered radioligand that targets prostate-specific membrane antigen (PSMA) also showed enhanced therapeutic efficacy. Considering the broad scope of proteins that can potentially be ligated to SuFEx warheads, it might be possible to adapt this strategy to other cancer targets.


Assuntos
Terapia de Alvo Molecular , Neoplasias da Próstata , Radioisótopos , Compostos Radiofarmacêuticos , Animais , Humanos , Masculino , Camundongos , Antígenos de Superfície/química , Antígenos de Superfície/metabolismo , Linhagem Celular Tumoral , Fluoretos/química , Fluoretos/metabolismo , Glutamato Carboxipeptidase II/química , Glutamato Carboxipeptidase II/metabolismo , Ligantes , Proteínas de Membrana/metabolismo , Proteínas de Membrana/química , Terapia de Alvo Molecular/métodos , Projetos Piloto , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/radioterapia , Radioisótopos/uso terapêutico , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/uso terapêutico , Compostos Radiofarmacêuticos/metabolismo , Compostos Radiofarmacêuticos/farmacocinética , Compostos de Enxofre/química , Compostos de Enxofre/metabolismo , Tirosina/metabolismo , Tirosina/química , Ensaios Antitumorais Modelo de Xenoenxerto
2.
PLoS Pathog ; 19(5): e1011123, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37196033

RESUMO

SARS-CoV Spike (S) protein shares considerable homology with SARS-CoV-2 S, especially in the conserved S2 subunit (S2). S protein mediates coronavirus receptor binding and membrane fusion, and the latter activity can greatly influence coronavirus infection. We observed that SARS-CoV S is less effective in inducing membrane fusion compared with SARS-CoV-2 S. We identify that S813T mutation is sufficient in S2 interfering with the cleavage of SARS-CoV-2 S by TMPRSS2, reducing spike fusogenicity and pseudoparticle entry. Conversely, the mutation of T813S in SARS-CoV S increased fusion ability and viral replication. Our data suggested that residue 813 in the S was critical for the proteolytic activation, and the change from threonine to serine at 813 position might be an evolutionary feature adopted by SARS-2-related viruses. This finding deepened the understanding of Spike fusogenicity and could provide a new perspective for exploring Sarbecovirus' evolution.


Assuntos
COVID-19 , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Humanos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Proteólise , Replicação Viral , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo
3.
Eur J Nucl Med Mol Imaging ; 51(6): 1703-1712, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38191817

RESUMO

PURPOSE: Boramino acids are a class of amino acid biomimics that replace the carboxylate group with trifluoroborate and can achieve the 18F-labeled positron emission tomography (PET) and boron neutron capture therapy (BNCT) with identical chemical structure. METHODS: This study reports a trifluoroborate-derived boronophenylalanine (BBPA), a derived boronophenylalanine (BPA) for BNCT, as a promising PET tracer for tumor imaging. RESULTS: Competition inhibition assays in cancer cells suggested the cell accumulation of [18F]BBPA is through large neutral amino acid transporter type-1 (LAT-1). Of note, [18F]BBPA is a pan-cancer probe that shows notable tumor uptake in B16-F10 tumor-bearing mice. In the patients with gliomas and metastatic brain tumors, [18F]BBPA-PET shows good tumor uptake and notable tumor-to-normal brain ratio (T/N ratio, 18.7 ± 5.5, n = 11), higher than common amino acid PET tracers. The [18F]BBPA-PET quantitative parameters exhibited no difference in diverse contrast-enhanced status (P = 0.115-0.687) suggesting the [18F]BBPA uptake was independent from MRI contrast-enhancement. CONCLUSION: This study outlines a clinical trial with [18F]BBPA to achieve higher tumor-specific accumulation for PET, provides a potential technique for brain tumor diagnosis, and might facilitate the BNCT of brain tumors.


Assuntos
Compostos de Boro , Neoplasias Encefálicas , Radioisótopos de Flúor , Fenilalanina , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Traçadores Radioativos , Animais , Feminino , Humanos , Camundongos , Compostos de Boro/análise , Compostos de Boro/metabolismo , Compostos de Boro/farmacocinética , Terapia por Captura de Nêutron de Boro , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/metabolismo , Radioisótopos de Flúor/análise , Radioisótopos de Flúor/metabolismo , Radioisótopos de Flúor/farmacocinética , Voluntários Saudáveis , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Imageamento por Ressonância Magnética , Melanoma Experimental , Camundongos Endogâmicos C57BL , Sondas Moleculares/análise , Sondas Moleculares/metabolismo , Sondas Moleculares/farmacocinética , Fenilalanina/análogos & derivados , Fenilalanina/análise , Fenilalanina/metabolismo , Fenilalanina/farmacocinética , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Ecotoxicol Environ Saf ; 270: 115901, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38157799

RESUMO

The toxicity of nanoparticles to freshwater microalgae is of significant importance in maintaining the overall stability of aquatic ecosystems. However, the transport mechanism and toxicity response of microalgae towards nanoplastics (NPs) remain to be further investigated. In this study, we examined the toxicity and internalization mechanisms of polystyrene nanoplastics (PS-NPs) in the microalga Chlorella sorokiniana. The results revealed that the PS-NPs inhibited algal cells' growth and disrupted cell integrity upon contact, leading to cell shrinkage or rupture. Moreover, amino-modified PS-NPs (Nano-PS-NH2) exhibited greater toxicity to C. sorokiniana than carboxyl-modified PS-NPs (Nano-PS-COOH). Furthermore, significant inhibition of PS-NPs internalization was observed when four different endocytosis-related inhibitors were used, indicating that internalized PS-NPs can enter algal cells through endocytic pathways. More importantly, C. sorokiniana exposed to Nano-PS-NH2 responded to the reduction in carbon sources and energy resulting from the suppression of photosynthesis by regulating the metabolism of carbohydrates. These findings elucidate the effects of PS-NPs on C. sorokiniana, including their impact on cell morphology and metabolism, while shedding light on the internalization mechanisms of NPs by C. sorokiniana which deepen our understanding of the toxicity of nanoplastics on algae and provide important theoretical support for solving such aquatic ecological environment problems.


Assuntos
Chlorella , Microalgas , Nanopartículas , Poluentes Químicos da Água , Microplásticos/toxicidade , Poliestirenos/toxicidade , Ecossistema , Poluentes Químicos da Água/toxicidade , Nanopartículas/toxicidade
5.
Eur J Nucl Med Mol Imaging ; 50(11): 3214-3224, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37318538

RESUMO

PURPOSE: Fibroblast activation protein is one of the most attractive targets for tumor diagnosis and therapy. There have been many successful clinical translations with small molecules and peptides, yet only a few anti-FAP antibody diagnostic or therapeutic agents have been reported. Antibodies often feature good tumor selectivity and long tumor retention, which may be a better-match with therapeutic radionuclides (e.g.,177Lu, 225Ac) for cancer therapy. Here we report a 177Lu-labeled anti-FAP antibody, PKU525, as a therapeutic radiopharmaceutical for FAP-targeted radiotherapy. METHODS: The anti-FAP antibody is produced as a derivative of sibrotuzumab. The pharmacokinetics and blocking study are performed with 89Zr-labeled antibody by PET imaging. The conjugation strategies have been screened and tested with SPECT imaging through 177Lu-labeling. The biodistribution and radiotherapy studies are performed on 177Lu-labeled anti-FAP antibody in NU/NU mice-bearing HT-1080-FAP tumors. RESULTS: A multiple time-point PET imaging study shows that the tumor accumulation of [89Zr]Zr-DFO-PKU525 is intense, selective, and relatively rapid. The time activity curve indicates that the tumor uptake continually increases until reaches the highest uptake (SUVmax = 18.4 ± 2.3, n = 4) at 192 h, then gradually declines. Radioactivity rapidly cleared from the blood, liver, and other major organs, resulting in high tumor-to-background ratios. An in vivo blocking experiment suggests that [89Zr]Zr-DFO-PKU525 is FAP-specific and the uptake in FAP-negative tumors is almost negligible. Ex vivo biodistribution study shows that the tumor uptake of [177Lu]Lu-DOTA-NCS-PKU525 is 23.04 ± 5.11% ID/g, 33.2 ± 6.36% ID/g, 19.87 ± 6.84% ID/g and 19.02 ± 5.90% ID/g at 24 h, 96 h, 168 h, and 240 h after injection (n = 5), which is corroborated with the PET imaging. In therapeutic assays, multiple doses of [177Lu]Lu-DOTA-NCS-PKU525 have been tested in tumor-bearing mice, and the data suggests that 3.7 MBq may be sufficient to completely suppress the tumor growth in mice without showing observable side effects. CONCLUSION: A FAP-targeted antibody-radionuclide conjugate was developed and evaluated in vitro and in vivo. Its tumor accumulation is rapid and high with a clean background. It remarkably suppresses the tumors in mice while the side effect is almost negligible, showing that it is promising for further clinical translational studies.


Assuntos
Imunoconjugados , Neoplasias , Animais , Camundongos , Distribuição Tecidual , Radioisótopos/uso terapêutico , Radioisótopos/química , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/uso terapêutico , Compostos Radiofarmacêuticos/farmacocinética , Neoplasias/diagnóstico por imagem , Neoplasias/radioterapia , Neoplasias/tratamento farmacológico , Imunoconjugados/uso terapêutico , Fibroblastos , Linhagem Celular Tumoral
6.
Eur J Nucl Med Mol Imaging ; 50(9): 2636-2646, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37103565

RESUMO

PURPOSE: Fibroblast activation protein (FAP) is a pan-cancer target and now the state-of-the-art to develop radiopharmaceuticals. FAP inhibitors have been of great success in developing imaging tracers. Yet, the overly rapid clearance cannot match with the long half-lives of regular therapeutic radionuclides. Though strategies that aim to elongate the circulation of FAPIs are being developed, here we describe an innovation that uses α-emitters of short half-lives (e.g., 213Bi) to pair the rapid pharmacokinetics of FAPIs. METHODS: An organotrifluoroborate linker is engineered to FAPIs to give two advantages: (1) selectively increases tumor uptake and retention; (2) facile 18F-radiolabeling for positron emission tomography to guide radiotherapy with α-emitters, which can hardly be traced in general. RESULTS: The organotrifluoroborate linker helps to improve the internalization in cancer cells, resulting in notably higher tumor uptake while the background is clean. In FAP-expressed tumor-bearing mice, this FAPI labeled with 213Bi, a short half-life α-emitter, exhibits almost complete suppression to tumor growth while the side effect is negligible. Additional data shows that this strategy is generally applicable to guide other α-emitters, such as 212Bi, 212Pb, and 149Tb. CONCLUSION: The organotrifluoroborate linker may be of importance to optimize FAP-targeted radiopharmaceuticals, and the short half-lived α-emitters may be of choice for the rapid-cleared small molecule-based radiopharmaceuticals.


Assuntos
Neoplasias , Compostos Radiofarmacêuticos , Animais , Camundongos , Compostos Radiofarmacêuticos/uso terapêutico , Compostos Radiofarmacêuticos/farmacocinética , Neoplasias/diagnóstico por imagem , Neoplasias/radioterapia , Neoplasias/tratamento farmacológico , Tomografia por Emissão de Pósitrons , Radioisótopos/uso terapêutico , Fibroblastos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Radioisótopos de Gálio
7.
J Antimicrob Chemother ; 77(5): 1301-1305, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35165715

RESUMO

OBJECTIVES: To investigate the antibacterial activity of the novel ß-lactamase inhibitor BLI-489 combined with imipenem or meropenem against diverse carbapenemase-producing carbapenem-resistant Enterobacterales (CRE) in vivo and in vitro. METHODS: Twenty-five CRE strains, including Klebsiella pneumoniae (n = 10), Escherichia coli (n = 6) and Enterobacter cloacae (n = 9), were used in chequerboard assays to evaluate the synergistic effect of BLI-489 combined with imipenem or meropenem. A cytotoxicity test was used to detect the toxicity of BLI-489 monotherapy or combination therapy. Three isolates producing class A, B and D carbapenemases, respectively, were selected to further confirm the synergistic effect in vitro by time-kill assays and in vivo by the Galleria mellonella infection model. RESULTS: Chequerboard assays demonstrated that BLI-489 combined with imipenem had a synergistic effect on 7/10, 7/9 and 5/6 of carbapenem-resistant K. pneumoniae, E. cloacae and E. coli, respectively, while BLI-489 and meropenem had a synergistic effect on 8/10, 9/9 and 6/6 of the isolates, respectively. No cytotoxicity was observed when BLI-489 was used alone or in combination with imipenem or meropenem at the test concentrations. In the time-kill assays, combination therapy had a synergistic effect on DC5114 carrying blaKPC-2, FK8401 carrying blaNDM-5 and CG996 carrying blaOXA-23. The synergistic effect in vivo was confirmed by the G. mellonella infection model. CONCLUSIONS: The novel ß-lactamase inhibitor BLI-489 possesses a synergistic effect against diverse carbapenemase-producing CRE combined with imipenem or meropenem.


Assuntos
Imipenem , Inibidores de beta-Lactamases , Antibacterianos/farmacologia , Proteínas de Bactérias/farmacologia , Carbapenêmicos/farmacologia , Escherichia coli , Imipenem/farmacologia , Klebsiella pneumoniae , Lactamas , Meropeném/farmacologia , Testes de Sensibilidade Microbiana , Monobactamas/farmacologia , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/farmacologia
8.
BMC Microbiol ; 22(1): 306, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36529724

RESUMO

BACKGROUND: Pseudomonas aeruginosa (P. aeruginosa) has been majorly implicated in the infection of burns, wounds, skin, and respiratory tract. Colistin is considered the last line of defense against P. aeruginosa infections. However, colistin is becoming increasingly invalid in treating patients infected with colistin-resistant (COL-R) P. aeruginosa. As one of the disinfectants used for wound infections, acetic acid (AA) offers good antibacterial and antibiofilm activities against P. aeruginosa. This study investigated the effects of AA on COL-R P. aeruginosa in terms of its antibacterial, antibiofilm, and anti-virulence properties and the corresponding underlying mechanisms. RESULTS: The antimicrobial susceptibility and growth curve data revealed that 0.078% (v/v) AA exhibited good antibacterial activity against COL-R P. aeruginosa. Subinhibitory concentrations of AA were ineffective in inhibiting biofilm formation, but 4 × and 8 × of the minimum inhibitory concentration (MIC) was effective in removing the preformed biofilms in biofilm-eradication assays. The virulence results illustrated that AA inhibited COL-R P. aeruginosa swimming, swarming, twitching, and pyocyanin and elastase production. The analysis of the potential antibacterial mechanisms of AA on COL-R P. aeruginosa revealed that AA acted by increasing the outer and inner membrane permeability, polarizing the membrane potential, and decreasing the reduction potential in a concentration-dependent manner. The qRT-PCR results revealed that AA may inhibit the virulence of COL-R P. aeruginosa by inhibiting the expression of T3SS-related and QS-related genes. CONCLUSIONS: AA possesses antibacterial, antibiofilm, and anti-virulence properties that ultimately lead to the alteration of the bacterial membrane permeability, membrane potential, and reduction potential. Our findings indicated that AA is presently one of the effective treatment options for infections. A high concentration of AA (> 0.156% v/v) can be used to sterilize biofilm-prone surgical instruments, for hospital disinfection, and for treating the external wound, whereas a low concentration of AA (0.00975-0.039% v/v) may be used as an anti-virulence agent for adjuvant treatment of COL-R P. aeruginosa, thereby further improving the application value of AA in the treatment of infections.


Assuntos
Infecções por Pseudomonas , Pseudomonas aeruginosa , Humanos , Colistina/farmacologia , Ácido Acético/farmacologia , Antibacterianos/farmacologia , Biofilmes , Testes de Sensibilidade Microbiana , Percepção de Quorum , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia
9.
J Med Virol ; 94(9): 4193-4205, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35570330

RESUMO

As one of the most rapidly evolving proteins of the genus Betacoronavirus, open reading frames (ORF8's) function and potential pathological consequence in vivo are still obscure. In this study, we show that the secretion of ORF8 is dependent on its N-terminal signal peptide sequence and can be inhibited by reactive oxygen species scavenger and endoplasmic reticulum-Golgi transportation inhibitor in cultured cells. To trace the effect of its possible in vivo secretion, we examined the plasma samples of coronavirus disease 2019 (COVID-19) convalescent patients and found that the patients aged from 40 to 60 had higher antibody titers than those under 40. To explore ORF8's in vivo function, we administered the mice with ORF8 via tail-vein injection to simulate the circulating ORF8 in the patient. Although no apparent difference in body weight, food intake, and vitality was detected between vehicle- and ORF8-treated mice, the latter displayed morphological abnormalities of testes and epididymides, as indicated by the loss of the central ductal lumen accompanied by a decreased fertility in 5-week-old male mice. Furthermore, the analysis of gene expression in the testes between vehicle- and ORF8-treated mice identified a decreased expression of Col1a1, the loss of which is known to be associated with mice's infertility. Although whether our observation in mice could be translated to humans remains unclear, our study provides a potential mouse model that can be used to investigate the impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection on the human reproductive system.


Assuntos
COVID-19 , Infertilidade Masculina , SARS-CoV-2 , Proteínas Virais , Sequência de Aminoácidos , Animais , Anticorpos Antivirais/sangue , Fertilidade , Humanos , Infertilidade Masculina/virologia , Masculino , Camundongos , Fases de Leitura Aberta
10.
Eur J Nucl Med Mol Imaging ; 49(6): 1985-1996, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34746969

RESUMO

INTRODUCTION: Radiopharmaceuticals that target cancer-associated fibroblasts (CAFs) have become an increasingly attractive strategy for cancer theranostics. Recently, a series of fibroblast activation protein inhibitor (FAPI)-based radiopharmaceuticals have been successfully applied to the diagnosis of a variety of cancers and exhibited excellent tumor selectivity. Nevertheless, CAF-targeted radionuclide therapy encounters difficulties in cancer treatment, as the tumor uptake and retention of FAPIs are insufficient. To meet this challenge, we tried to conjugate albumin-binding moiety to FAPI molecule for prolonged circulation that may increase the accumulation and retention of radiopharmaceuticals in tumor. METHODS: Two fatty acids, lauric acid (C12) and palmitic acid (C16), were conjugated to FAPI-04 to give two albumin-binding FAPI radiopharmaceuticals, denoted as FAPI-C12 and FAPI-C16, respectively. They had been radiolabeled with gallium-68, yttrium-86, and lutecium-177 for stability study, binding affinity assay, PET and SPECT imaging, biodistribution, and radionuclide therapy study to systematically evaluate their potential for CAF-targeted radionuclide therapy. RESULTS: FAPI-C12 and FAPI-C16 showed high binding affinity to FAP with the IC50 of 6.80 ± 0.58 nM and 5.06 ± 0.69 nM, respectively. They were stable in both saline and plasma. The tumor uptake of [68Ga]Ga-FAPI-04 decreased by 56.9% until 30 h after treated with FAPI-C16 before, and the uptakes of [86Y]Y-FAPI-C12 and [86Y]Y-FAPI-C16 in HT-1080-FAP tumor were both much higher than that of HT-1080-Vehicle tumor which identified the high FAP specific of these two radiopharmaceuticals. Both FAPI-C12 and FAPI-C16 showed notably longer circulation and significantly enhanced tumor uptake than those of FAPI-04. [177Lu]Lu-FAPI-C16 had the higher tumor uptake at both 24 h (11.22 ± 1.18%IA/g) and 72 h (6.50 ± 1.19%IA/g) than that of [177Lu]Lu-FAPI-C12 (24 h, 7.54 ± 0.97%IA/g; 72 h, 2.62 ± 0.65%IA/g); both of them were much higher than [177Lu]Lu-FAPI-04 with the value of 1.24 ± 0.54%IA/g at 24 h after injection. Significant tumor volume inhibition of [177Lu]Lu-FAPI-C16 at the high activity of 29.6 MBq was observed, and the median survival was 28 days which was much longer than that of the [177Lu]Lu-FAPI-04 treated group of which the median survival was only 10 days. CONCLUSION: This proof-of-concept study validates the hypothesis that conjugation of albumin binders may shift the pharmacokinetics and enhance the tumor uptake of FAPI-based radiopharmaceuticals. This could be a general strategy to transform the diagnostic FAP-targeted radiopharmaceuticals into their therapeutic pairs.


Assuntos
Ácidos Graxos , Compostos Radiofarmacêuticos , Albuminas , Linhagem Celular Tumoral , Endopeptidases/metabolismo , Fibroblastos/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Compostos Radiofarmacêuticos/farmacocinética , Distribuição Tecidual
11.
Mol Pharm ; 19(9): 3429-3438, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35976352

RESUMO

Fibroblast activation protein inhibitor (FAPI) is a novel quinoline-based radiopharmaceutical that has theranostic potential, yet the limited tumor retention hinders late-time diagnosis and radionuclide treatment. This study synthesized four albumin-binding FAPIs (TE-FAPI-01 to 04) and evaluated their in vitro stability, binding affinity, in vivo biodistribution, and tumor uptake with 68Ga, 86Y, and 177Lu labeling, aiming to select the best molecule that has favorable pharmacokinetics to extend the blood circulation and tumor uptake in FAP-expressing tumors. All TE-FAPIs were stable in saline and plasma and displayed high FAP-binding affinity, with IC50 values ranging from 3.96 to 34.9 nmol/L. The capabilities of TE-FAPIs to be retained in circulation were higher than that of FAPI-04, and TE-FAPI-04 displayed minimum physiological uptake in major organs compared with other molecules. TE-FAPI-03 and TE-FAPI-04 exhibited persistent tumor accumulation, with tumor radioactivity 24 h after administration of 2.84 ± 1.19%ID/g and 3.86 ± 1.15%ID/g for 177Lu-TE-FAPI-03 and 177Lu-TE-FAPI-04, respectively, both of which outperformed 177Lu-FAPI-04 (0.34 ± 0.07%ID/g). TE-FAPI-04 was recognized as the albumin-binding FAPI with the most favorable pharmacokinetics and imaging performance. The enhanced circulation half-life and tumor uptake of TE-FAPI-04 aided the theranostics of malignant tumors and warrant further clinical investigations.


Assuntos
Proteínas de Transporte , Neoplasias , Albuminas/metabolismo , Proteínas de Transporte/metabolismo , Fibroblastos/metabolismo , Radioisótopos de Gálio/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Distribuição Tecidual
13.
Mol Pharm ; 16(12): 5035-5041, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31670970

RESUMO

Similar to glycolysis, glutaminolysis acts as a vital energy source in tumor cells, providing building blocks for the metabolic needs of tumor cells. To capture glutaminolysis in tumors, 18F-(2S,4R)4-fluoroglutamine ([18F]FGln) and 18F-fluoroboronoglutamine ([18F]FBQ) have been successfully developed for positron emission tomography (PET) imaging, but these two molecules lack stability, resulting in undesired yet significant bone uptake. In this study, we found that [18F]FBQ-C2 is a stable Gln PET tracer by adding two more methylene groups to the side chain of [18F]FBQ. [18F]FBQ-C2 was synthesized with a good radiochemical yield of 35% and over 98% radiochemical purity. [18F]FBQ-C2 showed extreme stability in vitro, and no defluorination was observed after 2 h in phosphate buffered saline at 37 °C. The competitive inhibition assay results indicated that [18F]FBQ-C2 enters cells via the system ASC and N, similar to natural glutamine, and can be transported by tumor-overexpressed ASCT2. PET imaging and biodistribution results indicated that [18F]FBQ-C2 is stable in vivo with low bone uptake (0.81 ± 0.20% ID/g) and can be cleared rapidly from most tissues. Dynamic scan and pharmacokinetic studies using BGC823-xenograft-bearing mice revealed that [18F]FBQ-C2 accumulates specifically in tumors, with a longer half-life (101.18 ± 6.50 min) in tumor tissues than in other tissues (52.70 ± 12.44 min in muscle). Biodistribution exhibits a high tumor-to-normal tissue ratio (4.8 ± 1.7 for the muscle, 2.5 ± 1.0 for the stomach, 2.2 ± 0.9 for the liver, and 17.8 ± 8.4 for the brain). In conclusion, [18F]FBQ-C2 can be used to perform high-contrast Gln imaging of tumors and can serve as a PET tracer for clinical research.


Assuntos
Radioisótopos de Flúor/química , Glutamina/química , Animais , Linhagem Celular Tumoral , Feminino , Glutamina/análogos & derivados , Humanos , Espectroscopia de Ressonância Magnética , Camundongos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons
14.
Mol Pharm ; 15(10): 4426-4433, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30133286

RESUMO

Recently, inhibiting the PD-1/PD-L1 checkpoint pathway utilizing anti-PD-1 or anti-PD-L1 antibodies has achieved great clinical success in cancer treatment. However, anti-PD-1 immunotherapy cannot be applied to all cancer patients, no more than 25% showed a positive response. Immunohistochemistry (IHC) is the gold standard to determine the PD-L1 expression level in malignant lesions, but a noninvasive imaging-meditated strategy is urgently required for clinical diagnosis to cover the shortcomings of invasive techniques. MX001, which is an anti-PD-L1 antibody, was labeled with Cu-64 ( t1/2 = 12.7 h) and purified by PD-10 chromatography. Comprehensive studies including positron emission tomography (PET), ex vivo biodistribution, IHC, and immunotherapy have been performed in mice bearing MC38 (PD-L1 positive (+)) and 4T1 (PD-L1 negative (-)) xenografts. PET imaging of [18F]FDG was taken before and after therapy to monitor the therapeutic efficacy. [64Cu]Cu-NOTA-MX001 exhibited 2.3 ± 1.2, 5.6 ± 2.1, 5.6 ± 1.2, 6.1 ± 1.1, 6.1 ± 0.5, and 10.2 ± 1.7%ID/g uptake in MC38 xenografts at 0.5, 12, 24, 36, 48, and 62 h post-injection (p.i.), respectively. Meanwhile, the uptake in the liver and muscle at corresponding time points was 17.5 ± 2.2, 8.4 ± 2.4, 11.3 ± 3.2, 7.2 ± 2.1, 7.9.1 ± 3.5, and 3.8 ± 1.8%ID/g, and 1.2 ± 0.5, 1.3 ± 0.4, 1.5 ± 0.5, 0.7 ± 0.1, 0.6 ± 0.2, and 0.2 ± 0.1%ID/g, respectively. The uptake of [18F]FDG in MC38 and 4T1 xenografts at 1-h p.i. was 5.3 ± 0.4 and 6.4 ± 0.6%ID/g, while the uptake of [64Cu]Cu-NOTA-MX001 was 5.6 ± 0.3 and 1.3 ± 0.4%ID/g at 12-h p.i. IHC analysis confirmed that the MC38 tumor exhibited high PD-L1 expression, and the 4T1 tumor, liver, and muscle exhibited low PD-L1 expression. In addition, MC38 xenografts were suppressed by MX001 about 88% in the immunotherapy study. MX001 was successfully developed as a fully human anti-PD-L1 antibody with a high binding affinity in mouse, monkey, and human. The in vivo pharmacokinetics of MX001 was evaluated with PET imaging after being radiolabeled with Cu-64. The uptake of [64Cu]Cu-NOTA-MX001 was clearly correlated to the PD-L1 expression on various types of cancer. Subsequent immunotherapy studies demonstrated that MX001 could effectively suppress tumor growth with positive PD-L1 expression, but had poor antitumor efficacy on tumors which exhibited low PD-L1 expression. Together with the above results, MX001 has the potential to be further developed as an antibody theranostic agent for both PET imaging and immunotherapy of cancers in clinics.


Assuntos
Anticorpos/uso terapêutico , Antígeno B7-H1/metabolismo , Imunoterapia/métodos , Animais , Antígeno B7-H1/imunologia , Linhagem Celular Tumoral , Feminino , Humanos , Imuno-Histoquímica , Camundongos , Tomografia por Emissão de Pósitrons , Receptor de Morte Celular Programada 1/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Radioimunodetecção
15.
Langmuir ; 31(21): 5758-66, 2015 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-25961406

RESUMO

Fatty acids, as a typical example of stearic acid, are a kind of cheap surfactant and have important applications. The challenging problem of industrial applications is their solubility. Herein, three organic amines-ethanolamine (EA), diethanolamine (DEA), and triethanolamine (TEA)-were used as counterions to increase the solubility of stearic acid, and the phase behaviors were investigated systematically. The phase diagrams were delineated at 25 and 50 °C, respectively. The phase-transition temperature was measured by differential scanning calorimetry (DSC) measurements, and the microstructures were vesicles and planar sheets observed by cryogenic transmission electron microscopy (cryo-TEM) observations. The apparent viscosity of the samples was determined by rheological characterizations. The values, rcmc, for the three systems were less than 30 mN·m(-1). Typical samples of bilayers used as foaming agents and emulsifiers were investigated for the foaming and emulsification assays. CO2 was introduced to change the solubility of stearic acid, inducing the transition of their surface activity and further achieving the goal of defoaming and demulsification.

16.
Hum Immunol ; 85(2): 110765, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38369442

RESUMO

Numerous cardiovascular disorders have atherosclerosis as their pathological underpinning. Numerous studies have demonstrated that, with the aid of pattern recognition receptors, cytokines, and immunoglobulins, innate immunity, represented by monocytes/macrophages, and adaptive immunity, primarily T/B cells, play a critical role in controlling inflammation and abnormal lipid metabolism in atherosclerosis. Additionally, the finding of numerous complement components in atherosclerotic plaques suggests yet again how heavily the immune system controls atherosclerosis. Therefore, it is essential to have a thorough grasp of how the immune system contributes to atherosclerosis. The specific molecular mechanisms involved in the activation of immune cells and immune molecules in atherosclerosis, the controversy surrounding some immune cells in atherosclerosis, and the limitations of extrapolating from relevant animal models to humans were all carefully reviewed in this review from the three perspectives of innate immunity, adaptive immunity, and complement system. This could provide fresh possibilities for atherosclerosis research and treatment in the future.


Assuntos
Aterosclerose , Animais , Humanos , Imunidade Inata , Imunidade Adaptativa , Inflamação , Leucócitos/patologia
17.
Microbiol Spectr ; 12(1): e0229523, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38032179

RESUMO

IMPORTANCE: Colistin is used as a last resort in many infections caused by multidrug-resistant Gram-negative bacteria; however, colistin-resistant (COL-R) is on the rise. Hence, it is critical to develop new antimicrobial strategies to overcome COL-R. We found that nitazoxanide (NTZ) combined with colistin showed notable synergetic antibacterial activity. These findings suggest that the NTZ/colistin combination may provide an effective alternative route to combat COL-R A. baumannii and COL-R Escherichia coli infections.


Assuntos
Acinetobacter baumannii , Colistina , Nitrocompostos , Tiazóis , Colistina/farmacologia , Antiparasitários/farmacologia , Escherichia coli , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana Múltipla , Testes de Sensibilidade Microbiana
18.
Sci Total Environ ; 914: 169872, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38199360

RESUMO

Synthetic musks (SMs) have gained widespread utilization in daily consumer products, leading to their widespread dissemination in aquatic environments through various pathways. Over the past few decades, the production of SMs has consistently risen, prompting significant concern over their potential adverse impacts on ecosystems and human health. Although several studies have focused on the development of analytical techniques for detecting SMs in biological samples and cosmetic products, a comprehensive evaluation of their global distribution in diverse aquatic media and biological matrices remains lacking. This review aims to provide an up-to-date overview of the occurrence of SMs in both aquatic and various biological matrices, investigating their worldwide distribution trends, assessing their ecological toxicity, and comparing different methodologies for processing and analysis of SMs. The findings underscore the prevalence of polycyclic musks as predominant SMs, with consumption of various products in different countries leading to contrasting distribution of contaminants. Furthermore, the migration of SMs from sediments to the water phase is investigated, indicating the role of solid-phase reservoirs. Incomplete degradation of SMs in the environment could contribute to their accumulation in aquatic systems, impacting the growth and oxidative stress of aquatic organisms, and having a possibility of genotoxicity to them. Human exposure data highlight substantial risks for vulnerable populations such as pregnant women and infants. Moreover, contemporary methods for SMs analysis are presented in this review, particularly focusing on advancements made in the last five years. Finally, research enhancement and critical questions regarding the analysis of SMs are provided, offering suggestions for future research endeavors.


Assuntos
Cosméticos , Poluentes Químicos da Água , Gravidez , Humanos , Feminino , Ecossistema , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Organismos Aquáticos
19.
mSphere ; 9(2): e0055323, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38299825

RESUMO

The bacteriophage is an effective adjunct to existing antibiotic therapy; however, in the course of bacteriophage therapy, host bacteria will develop resistance to bacteriophages, thus affecting the efficacy. Therefore, it is important to describe how bacteria evade bacteriophage attack and the consequences of the biological changes that accompany the development of bacteriophage resistance before the bacteriophage is applied. The specific bacteriophage vB3530 of Pseudomonas aeruginosa (P. aeruginosa) has stable biological characteristics, short incubation period, strong in vitro cleavage ability, and absence of virulence or resistance genes. Ten bacteriophage-resistant strains (TL3780-R) were induced using the secondary infection approach, and the plaque assay showed that vB3530 was less sensitive to TL3780-R. Identification of bacteriophage adsorption receptors showed that the bacterial surface polysaccharide was probably the adsorption receptor of vB3530. In contrast to the TL3780 parental strain, TL3780-R is characterized by the absence of long lipopolysaccharide chains, which may be caused by base insertion of wzy or deletion of galU. It is also intriguing to observe that, in comparison to the parent strain, the bacteriophage-resistant strains TL3780-R mostly exhibited a large cost of fitness (growth rate, biofilm formation, motility, and ability to produce enhanced pyocyanin). In addition, TL3780-R9 showed increased susceptibility to aminoglycosides and chlorhexidine, which may be connected to the loss and down-regulation of mexX expression. Consequently, these findings fully depicted the resistance mechanism of P. aeruginosa to vB3530 and the fitness cost of bacteriophage resistance, laying a foundation for further application of bacteriophage therapy.IMPORTANCEThe bacteriophage is an effective adjunct to existing antibiotic therapy; However, bacteria also develop defensive mechanisms against bacteriophage attack. Thus, there is an urgent need to deeply understand the resistance mechanism of bacteria to bacteriophages and the fitness cost of bacteriophage resistance so as to lay the foundation for subsequent application of the phage. In this study, a specific bacteriophage vB3530 of P. aeruginosa had stable biological characteristics, short incubation period, strong in vitro cleavage ability, and absence of virulence or resistance genes. In addition, we found that P. aeruginosa may lead to phage resistance due to the deletion of galU and the base insertion of wzy, involved in the synthesis of lipopolysaccharides. Simultaneously, we showed the association with the biological state of the bacteria after bacteria acquire bacteriophage resistance, which is extremely relevant to guide the future application of therapeutic bacteriophages.


Assuntos
Bacteriófagos , Infecções por Pseudomonas , Humanos , Bacteriófagos/genética , Pseudomonas aeruginosa , Infecções por Pseudomonas/terapia , Infecções por Pseudomonas/microbiologia , Antibacterianos/farmacologia , Virulência
20.
Int J Antimicrob Agents ; 64(2): 107233, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38824971

RESUMO

Acinetobacter baumannii, which is predominantly responsible for hospital-acquired infections, presents a tremendous clinical challenge due to its increasing antibiotic resistance to colistin (COL), a last-line antibiotic. As a result, the combination of antimicrobial and non-antimicrobial agents is emerging as a more popular treatment approach against infections caused by COL-resistant A. baumannii. This study administered COL and verapamil (VER), that is an antihypertensive and antiarrhythmic agent. We found that the susceptibility of A. baumannii to COL was restored both in vitro and in vivo. Scanning electron microscope and Crystal violet staining showed inhibition of the VER/COL combination on bacterial biofilm formation. Cytotoxicity assay and haemolysis test were used to confirm in vitro safety evaluation. Further experiments using propidium iodide staining revealed that the VER/COL combination improved the therapeutic efficacy of COL by modifying the permeability of bacterial membranes. As demonstrated by reactive oxygen species experiments, the drug combination caused the accumulation of bacterial reactive oxygen species and their eventual death. Additionally, VER/COL treatment significantly reduced the efflux of Rhodamine 123 (Rh123). For the first time, this study identifies the anti-hypertensive drug VER as a COL potentiator against A. baumannii, providing a potential treatment approach against A. baumannii infections and improving patient outcomes.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa