Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 28(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37894713

RESUMO

In this paper, the bio-based raw material erythritol was used to introduce an acetal structure into the benzoxazine resins. The benzoxazine-based resins containing an erythritol acetal structure could be degraded in an acidic solution and were environmentally friendly thermosetting resins. Compounds and resins were characterized by 1H nuclear magnetic resonance (1H NMR) and Fourier-transform infrared (FT-IR) analyses, and melting points were studied by a differential scanning calorimeter (DSC); the molecular weight was analyzed by gel permeation chromatography (GPC). The dynamic mechanical properties and thermal stability of polybenzoxazine resins were studied by dynamic mechanical thermal analysis (DMTA) and a thermogravimetric analyzer (TGA), respectively. The thermal aging, wet-heat resistance, and degradation properties of polybenzoxazine resins were tested. The results showed that the polybenzoxazine resins synthesized in this paper had good thermal-oxidative aging, and wet-heat resistance and could be completely degraded in an acidic solution (55 °C DMF: water: 1 mol/L hydrochloric acid solution = 5:2:4 (v/v/v)).

2.
Molecules ; 28(14)2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37513322

RESUMO

Trisilanolphenyl-polyhedral oligomeric silsesquioxane titanium (Ti-Ph-POSS) was synthesized through the corner-capping reaction, and Ti-Ph-POSS was dispersed in benzoxazine (BZ) to prepare Ti-Ph-POSS/PBZ composite materials. Ti-Ph-POSS could catalyze the ring-opening polymerization (ROP) of BZ and reduce the curing temperature of benzoxazine. In addition, Ti immobilized on the Ti-Ph-POSS cage could form covalent bonds with the N or O atoms on polybenzoxazine, improving the thermal stability of PBZ. The catalytic activity of the Ti-Ph-POSS/BZ mixtures was assessed and identified through 1H nuclear magnetic resonance (1H-NMR) and Fourier-transform infrared (FTIR) analyses, while thermogravimetric analysis (TGA) and dynamic mechanical analysis (DMA) were used to determine the thermal properties of the composite. It was found that PBZ exhibited a higher glass transition temperature (Tg) and better thermal stability when Ti-Ph-POSS was added. The curing behavior of the Ti-Ph-POSS/BZ mixtures showed that the initial (Ti) and peak (Tp) curing temperatures sharply decreased as the content of Ti-Ph-POSS and the heating rate increased. The curing kinetics of these Ti-Ph-POSS/BZ systems were analyzed using the Kissinger method, and the morphology of Ti-Ph-POSS/PBZ was determined via scanning electron microscopy (SEM). It was found that the Ti-Ph-POSS particles were well distributed in the composites. When the content exceeded 2 wt%, several Ti-Ph-POSS particles could not react with benzoxazine and were only dispersed within the PBZ matrix, resulting in aggregation of the Ti-Ph-POSS molecules.

3.
Polymers (Basel) ; 16(6)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38543388

RESUMO

A new type of benzoxazine resin has been synthesized using a natural phenol source, guaiacol, and a biomass amines, furfuramine. The synthesis conditions were optimized; when the reaction molar ratio of guaiacol, furfuramine, and polyformaldehyde was 1:1:4, the highest synthetic yield was reached. The product was characterized via testing using transform infrared spectroscopy (FT-IR), gel permeation chromatography (GPC), mass spectrogram (MS), and nuclear magnetic resonance (1H-NMR) to confirm its molecular structure. A differential scanning calorimetry (DSC) test was conducted to analyze the thermodynamic properties of the product, and the results showed that the product decomposed and evaporated at around 180 °C, making it impossible to achieve self-curing. However, the prepared guaiacol-furfuramine benzoxazine resin (GFZ) can be blended and cured in certain proportions with bisphenol A-aniline oxazine resin (BAZ) as a GFZ/BAZ binary system (5:95, 10:90, 20:80, and 40:60). Dynamic mechanical analysis (DMA) test results showed that when the content of GFZ was 10%, the storage modulus of the copolymer resin was greatly improved. After conducting impact strength tests on the copolymer resin, it was found that the toughness of the copolymer resin had improved, and the maximum impact strength had increased by nearly three times. This indicates that the flexible long-chain structure in GFZ can effectively improve the toughness of the cured copolymer system. The reaction of active groups on benzoxazine molecules with other resins can not only improve the mechanical properties of their cured products, but also has important significance in the preparation of low-cost and environmentally friendly sustainable composite materials with excellent comprehensive performance.

4.
Polymers (Basel) ; 16(13)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39000746

RESUMO

The decay of radon gas in soil and buildings produces alpha radiation, which is the second leading cause of lung cancer in humans. Therefore, by conveniently detecting radon gas in the environment, potential sources of danger can be identified early, and necessary measures can be taken to protect human health. Solid-state nuclear track detectors prepared from polyallyl diglycol carbonate (PADC) resin are the most sensitive detectors for alpha radiation released by radon gas. The traditional method of preparing PADC resin involves free radical thermal polymerization, which suffers from issues such as low polymerization efficiency, long processing time, and the occurrence of defects in the product. In this study, PADC resin was efficiently prepared using a UV initiator. Starting from the polymerization mechanism, experiments were designed using a controlled variable approach, and a rational polymerization apparatus was devised. By comparing the double bond conversion rate, transparency, hardness, and yellowness index of the polymers, the optimal initiator for PADC resin, 2-hydroxy-2-methyl-1-phenyl-1-propanone (1173), was selected. The influence of irradiation intensity, irradiation time, and UV initiator dosage was investigated. The performance of the polymers, including double bond conversion rate, optical properties, dynamic mechanical properties, etching rate, and track detection efficiency, was analyzed. The experimental conditions for preparing PADC resin were optimized: irradiation intensity of 12 mW/cm2, irradiation time of 25 min, and UV initiator dosage of 5 parts. The resulting resin polymer had a double bond conversion rate of 93.2% and a track detection efficiency of 0.714.

5.
Polymers (Basel) ; 14(23)2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36501549

RESUMO

In this study a new type of bifunctional epoxy compound (DDSQ-EP) based on double-decker silsesquioxane (DDSQ) was synthesized by process of alkaline hydrolysis condensation of phenyltrimethoxysilane and corner capping reaction with dichloromethylvinylsilane, followed by epoxidation reaction of vinyl groups. The resultant structures were confirmed using Fourier transform infrared spectrometry, nuclear magnetic resonance spectrometry and time-of-flight mass spectrometry, respectively. The DDSQ-EP was incorporated into polybenzoxazine to obtain the PBZ/DDSQ-EP nanocomposites. The uniform dispersion of DDSQ-EP in the nanocomposites was verified by X-ray diffraction and scanning electron microscope. The reactions occurred during the curing of the composites and were investigated using infrared spectroscopy of segmented cures. Dynamic mechanical analysis and thermal gravimetric analysis indicated that the storage modulus, glass transition temperature and thermal stability of PBZ/DDSQ-EP were increased in comparison with pure benzoxazine resins. Assessment of dielectric properties demonstrated that the dielectric permittivity and dielectric loss of polybenzoxazine decreased slightly because of the addition of DDSQ-EP.

6.
Materials (Basel) ; 15(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36499862

RESUMO

This paper presents an investigation of the modification of natural oxazines to traditional bisphenol A benzoxazines. Eugenol was reacted with furfurylamine to synthesize a new type of benzoxazine (eugenol-furfurylamine benzoxazine), with a yield of 77.65%; and another new type of benzoxazine (bisphenol A-furfurylamine benzoxazine) was generated from bisphenol A and furfurylamine, with the highest yield of 93.78%. In order to analyze and study the target molecules, IR (infrared radiation) spectroscopy, GPC (gel-permeation chromatograph), mass spectrometry, 1H-NMR (nuclear magnetic resonance), DSC (differential scanning calorimetry), and DMA (dynamic mechanical analysis) tests were conducted. Eugenol-furfurylamine benzoxazine and conventional bisphenol A-aniline benzoxazine (BZ) composite was also analyzed and cured at different mass ratios of 2:98, 5:95, 10:90, 20:80, and 40:60. When the content of eugenol furfurylamine in the blend reached 5%, the strength of the composite was greatly enhanced, while the strength decreased with the increase in eugenol furfurylamine oxazine content. Moreover, octamaleimide phenyl POSS (OMPS, polyhedral oligomeric silsesquioxane) and bisphenol A furamine benzoxazine were mixed at different molar ratios of 1:16, 1:8, 1:4, 1:2, and 1:1. The curing temperature sharply decreased with the increase in OMPS content. When the molar ratio reached 1:1, the curing temperature decreased from 248 to 175℃. A further advantage of using eugenol and furfurylamine is that they are renewable resources, which is important in terms of utilizing resources effectively and developing environmentally friendly products.

7.
Membranes (Basel) ; 11(7)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209570

RESUMO

We report on the preparation and characterization of a novel lamellar polypyrrole using an attapulgite-sulfur composite as a hard template. Pretreated attapulgite was utilized as the carrier of elemental sulfur and the attapulgite-sulfur-polypyrrole (AT @400 °C-S-PPy) composite with 50 wt.% sulfur was obtained. The structure and morphology of the composite were characterized with infrared spectroscopy (IR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). An AT @400 °C-S-PPy composite was further utilized as the cathode material for lithium-sulfur batteries. The first discharge specific capacity of this kind of battery reached 1175 mAh/g at a 0.1 C current rate and remained at 518 mAh/g after 100 cycles with capacity retention close to 44%. In the rate test, compared with the polypyrrole-sulfur (PPy-S) cathode material, the AT @400 °C-S-PPy cathode material showed lower capacity at a high current density, but it showed higher capacity when the current came back to a low current density, which was attributed to the "recycling" of pores and channels of attapulgite. Therefore, the lamellar composite with special pore structure has great value in improving the performance of lithium-sulfur batteries.

8.
Materials (Basel) ; 14(21)2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34771965

RESUMO

The preparation and characterization of a polyaniline-silver-sulfur nanotube composite were reported in this paper. The polyaniline-silver nanotube composite was synthesized via an oxidation-reduction method in the sodium dodecyl sulfate (SDS) solution. After being vulcanized, the polyaniline-silver-sulfur (Poly (AN-Ag-S)) nanotube composite was prepared as active cathode material and assembled into lithium-sulfur (Li-S) batteries with electrolyte and negative electrode materials. When the feed ratio of raw materials (aniline and AgNO3) was 2:1, the initial specific capacity of poly (AN-Ag-S) composite cells reached 1114 mAh/g. The specific capacity was kept at 573 mAh/g, and the capacity retention rate stayed above 51% after 100 cycles. The introduction of Ag into the composite cathode material can effectively solve the poor conductivity of sulfur and improve the Li-S battery performance.

9.
Polymer (Guildf) ; 48(9): 2720-2728, 2007 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-17940586

RESUMO

The objective of this research was to study the reinforcement of electrospun nylon 6/fibrillar silicate nanocomposite nanofibers on Bis-GMA/TEGDMA dental composites. The hypothesis was that the uniform distribution of nano-scaled and highly aligned fibrillar silicate single crystals into electrospun nylon 6 nanofibers would improve the mechanical properties of the resulting nanocomposite nanofibers, and would lead to the effective reinforcement of dental composites. The nylon 6/fibrillar silicate nanocomposite nanofibers were crystalline, structurally oriented and had an average diameter of approximately 250 nm. To relatively well distribute nanofibers in dental composites, the nanofiber containing composite powders with a particle structure similar to that in interpenetration networks were prepared first, and then used to make the dental composites. The results indicated that small mass fractions (1 % and 2 %) of nanofiber impregnation improved the mechanical properties substantially, while larger mass factions (4 % and 8 %) of nanofiber impregnation resulted in less desired mechanical properties.

10.
ACS Appl Mater Interfaces ; 8(31): 20329-41, 2016 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-27459593

RESUMO

Poly(styrene-b-(ethylene-co-butylene)-b-styrene) triblock copolymer (SEBS) was selected for functionalization and cross-linking reaction to prepare the anion exchange membrane. The cross-linked quaternized SEBS (QSEBS-Cn) membranes were synthesized by simultaneous of quaternization and cross-linking of chloromethylated SEBS with α,ω-difunctional tertiary amines. The spacer groups of (-CH2-)n in diamines did affect the functionalization, micromorphology and properties of the resulting QSEBS-Cn membranes. The ionic conductivity of QSEBS-Cn membranes greatly increased and methanol resistance slightly decreased with increasing the length of spacer groups in the cross-linked structures from -(CH2)- to -(CH2)6-. Compared to the un-cross-linked QSEBS, the QSEBS-Cn membranes behaved much higher mechanical property, service temperature, chemical stability and thermal stability. Moreover, the hybrid composite membrane of QSEBS-C6 with 0.5% of graphene oxide could also be in situ prepared. This hybrid membrane had both relatively high ionic conductivity of 2.0 × 10(-2) S·cm(-1) and high selectivity of 7.6 × 10(4) S·s·cm(-3) at 60 °C due to its low methanol permeability.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa