Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 21(1): 383, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37858186

RESUMO

Immunotherapy has good potential to eradicate tumors in the long term. However, due to the low immunogenicity of tumor cells, current cancer immunotherapies are not effective. To address this limitation, we constructed a BSA-FA functionalized iron-containing metal-organic framework (TPL@TFBF) that triggers a potent systemic anti-tumor immune response by inducing ferroptosis and pyroptosis in tumor cells and releasing large quantities of damage-associated molecular patterns (DAMPs) to induce immunogenicity, and showing excellent efficacy against melanoma lung metastases in vivo. This nanoplatform forms a metal-organic framework through the coordination between tannic acid (TA) and Fe3+ and is then loaded with triptolide (TPL), which is coated with FA-modified BSA. The nanoparticles target melanoma cells by FA modification, releasing TPL, Fe3+ and TA. Fe3+ is reduced to Fe2+ by TA, triggering the Fenton reaction and resulting in ROS production. Moreover, TPL increases the production of intracellular ROS by inhibiting the expression of nuclear factor erythroid-2 related factor (Nrf2). Such simultaneous amplification of intracellular ROS induces the cells to undergo ferroptosis and pyroptosis, releasing large amounts of DAMPs, which stimulate antigen presentation of dendritic cells (DCs) and the proliferation of cytotoxic T lymphocytes (CD4+/CD8 + T cells) to inhibit tumor and lung metastasis. In addition, combining nanoparticle treatment with immune checkpoint blockade (ICB) further inhibits melanoma growth. This work provides a new strategy for tumor immunotherapy based on various combinations of cell death mechanisms.


Assuntos
Ferroptose , Neoplasias Pulmonares , Melanoma , Estruturas Metalorgânicas , Neoplasias , Humanos , Piroptose , Espécies Reativas de Oxigênio , Melanoma/tratamento farmacológico , Imunoterapia , Neoplasias Pulmonares/tratamento farmacológico , Linhagem Celular Tumoral
2.
Bull Entomol Res ; 112(6): 758-765, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35431022

RESUMO

Energy homeostasis is essential for organisms to maintain fluctuation in energy accumulation, mobilization. Lipids as the main energy reserve in insects, their metabolism is under the control of many physiological program. This study aimed to determine whether the adipokinetic hormone receptor (AKHR) was involved in the lipid mobilization in the Spodoptera litura. A full-length cDNA encoding AKHR was isolated from S. litura. The SlAKHR protein has a conserved seven-transmembrane domain which is the character of a putative G protein receptor. Expression profile investigation revealed that SlAKHR mRNA was highly expressed in immatural stage and abundant in fat body in newly emerged female adults. Knockdown of SlAKHR expression was achieved through RNAi by injecting double-stranded RNA (dsRNA) into the 6th instar larvae. The content of triacylgycerol (TAG) in the fat body increased significantly after the SlAKHR gene was knockdown. And decrease of TAG releasing to hemolymph with increase of free fatty acid (FFA) in hemolymph were observed when the SlAKHR gene was knowned-down. In addition, lipid droplets increased in fat body was also found. These results suggested that SlAKHR is critical for insects to regulate lipids metabolism.


Assuntos
Hormônios de Inseto , Mobilização Lipídica , Feminino , Animais , Spodoptera/genética , Spodoptera/metabolismo , Hormônios de Inseto/genética , Hormônios de Inseto/metabolismo , Proteínas de Transporte/genética , Larva/genética , Larva/metabolismo , RNA de Cadeia Dupla , Insetos , Lipídeos
4.
RSC Adv ; 14(15): 10608-10637, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38567339

RESUMO

Nanoparticle (NP) drug delivery systems have shown promise in tumor therapy. However, limitations such as susceptibility to immune clearance and poor targeting in a complex intercellular environment still exist. Recently, cancer cell membrane-encapsulated nanoparticles (CCM-NPs) constructed using biomimetic nanotechnology have been developed to overcome these problems. Proteins on the membrane surface of cancer cells can provide a wide range of activities for CCM-NPs, including immune escape and homologous cell recognition properties. Meanwhile, the surface of the cancer cell membrane exhibits obvious antigen enrichment, so that CCM-NPs can transmit tumor-specific antigen, activate a downstream immune response, and produce an effective anti-tumor effect. In this review, we first provided an overview of the functions of cancer cell membranes and summarized the preparation techniques and characterization methods of CCM-NPs. Then, we focused on the application of CCM-NPs in tumor therapy. In addition, we summarized the functional modifications of cancer cell membranes and compiled the patent applications related to CCM-NPs in recent years. Finally, we proposed the future challenges and directions of this technology in order to provide guidance for researchers in this field.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa