RESUMO
Solar evaporation is one of the most attractive and sustainable approaches to address worldwide freshwater scarcity. Unfortunately, it is still a crucial challenge that needs to be confronted when the solar evaporator faces harsh application environments. Herein, a promising polymer molding method that combines melt blending and compression molding, namely micro extrusion compression molding, is proposed for the cost-effective fabrication of lightweight polyethylene/graphene nanosheets (PE/GNs) foam with interconnected vapor escape channels and surface micro-nanostructures. A contact angle of 155 ± 2°, a rolling angle of 5 ± 1° and reflectance of ≈1.6% in the wavelength range of 300-2500 nm appears on the micro-nanostructured PE/GNs foam surface. More interestingly, the micro-nanostructured PE/GNs foam surface can maintain a robust superhydrophobic state under dynamic impacting, high temperature and acid-/alkali solutions. These results mean that the micro-nanostructured PE/GNs foam surface possesses self-cleaning, anti-icing and photothermal deicing properties at the same time. Importantly, the foam exhibits an evaporation rate of 1.83 kg m-2 h-1 under 1 Sun illumination and excellent salt rejecting performance when it is used as a self-floating solar evaporator. The proposed method provides an ideal and industrialized approach for the mass production of solar evaporators suitable for practical application environments.
Assuntos
Grafite , Nanoestruturas , Purificação da Água , Álcalis , Análise Custo-Benefício , Interações Hidrofóbicas e Hidrofílicas , Pinças Ópticas , PolietilenoRESUMO
The present study investigated the anti-oxidative and anti-apoptotic effects and molecular mechanisms of catalpol on the H_2O_2-induced pancreatic ß-cells(INS-1 cells).The oxidative damage model of INS-1 cells was induced and optimized by the stimulation of H_2O_2 of different concentrations for different time.CCK-8 assay was used to detect cell viability after catalpol intervention(1, 5, 10, 20, 40, 80, and 160 µmol·L~(-1)) for 24 h.Intracellular reactive oxygen species(ROS), superoxide dismutase(SOD), and lipid peroxide malondialdehyde(MDA) were measured by DCFH-DA fluorescent probe, WST-1, and TBA respectively.Moreover, the apo-ptotic effect was detected by AO-EB and Annexin V-FITC/PI staining.In addition, the protein expression levels were detected by Wes-tern blot, and intracellular insulin concentration was measured by ELISA.The results showed that the oxidative damage model of INS-1 cells was stably induced by 50 µmol·L~(-1) H_2O_2 treatment for 2 h, and catalpol at 1-80 µmol·L~(-1) did not affect cell viability of INS-1 cells.Compared with the conditions in the model group, 1, 5, and 10 µmol·L~(-1) catalpol intervention for 2 h could protect INS-1 cells from oxidative damage(P<0.001), reduce ROS and MDA, increase SOD, and inhibit excessive cell apoptosis.Moreover, 1, 5, and 10 µmol·L~(-1) catalpol could also up-regulate the phosphorylation of nuclear transcription factor NF-E2 related factors, negatively regulate Kelch-like ECH-associated protein 1(Keap1), phosphorylation of extracellular signal-regulated kinase(ERK), and heme oxyge-nase 1(HO-1), and promote the protein expression of pancreatic-duodenal homeobox factor-1(PDX-1) and glucose transporter 2(GLUT2).In addition, 1, 5, and 10 µmol·L~(-1) catalpol increased insulin secretion of INS-1 cells under oxidative damage in the high-glucose culture medium, indicating function recovery of pancreatic ß cells.PDX-1 is a key nuclear transcription factor of pancreatic ß cell function that directly regulates GLUT2 and insulin synthesis, and affects glucose homeostasis.In conclusion, catalpol can reduce the oxidative damage and apoptosis of INS-1 cells, activate antioxidant pathway, protect the function of pancreatic ß cells, and improve insulin synthesis and secretion.
Assuntos
Células Secretoras de Insulina , Apoptose , Glucose/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Glucosídeos Iridoides , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismoRESUMO
Producing high-quality graphene and polymer/graphene nanocomposite is facing the problems of complex procedure, low efficiency, and serious resource waste. To explore a new fabrication approach with high efficiency and low cost is crucial for solving these technical issues, which becomes a current research hotspot and also a great challenge. Herein, a one-step melt mixing strategy based on the synergy of steam explosion and alternating convergent-divergent flow, is innovatively developed to fabricate high-density polyethylene (HDPE)/graphene nanocomposites using industrial-grade expanded graphite (EG) without chemical agents and complex procedures. The co-action of the external force derived from elongational melts and the internal force generated by steam explosion make EG ultrafastly exfoliate into few-layer graphene nanosheets (GNS) and simultaneously disperse in melts within 4 min. The as-produced GNS have a lateral size of over 5 µm and a minimum thickness of 1.4 nm, can introduce super heterogeneous nucleation to HDPE macromolecules and greatly increases nanocomposite crystallinity up to 86.5%. Moreover, plentiful HDPE crystallites and well-dispersed GNS jointly form an improved thermally-conductive network, making nanocomposites with a rapid-respond ability in solar-to-thermal conversion and heat dissipation. This facile strategy will facilitate the development of scalable production and wide application of high-performance graphene and highly-filled nanocomposites.
RESUMO
Facing various problems caused by icing in daily life, preparing photothermal deicing materials with wide applicability in high efficiency and low cost is not only a current research hotspot but also a great challenge. Herein, an economical spray-coating method is applied to prepare high-efficiency flexible photothermal icephobic copper mesh using micro silicon carbide (SiC) particles as photothermal conversion material and nano silica (SiO2) particles as a surface superhydrophobic modifier. Owing to the excellent hierarchical micro-nanostructures, the SiC/SiO2 coated copper mesh exhibits a water contact angle (CA) of 162 ± 2° and a sliding angle (SA) of 3 ± 2°. Interestingly, the coated copper mesh exhibits exceptional mechanical durability against water droplet and water flow impact, repeated bending-twisting and tape-peeling. Benefitting from the robust superhydrophobicity, the SiC/SiO2 coating on the copper mesh can significantly delay the freezing time of the droplets and reduce the ice adhesion strength. Furthermore, the coated copper mesh well retains the good photothermal conversion and thermal conductivity properties of the micro SiC particles. Under NIR irradiation, the surface temperature of the coated copper mesh placed on the ice layer can increase by 35.3 °C in 220 s, so that it can rapidly melt the accumulated frost and ice layer on the inner wall of the refrigerator. The presented flexible photothermal icephobic copper mesh exhibits enormous potential when applied to remove ice from apparatus that is accessible, such as road, overhead transmission lines and power networks owing to its flexibility, economy, and high energy efficiency.
RESUMO
Reported herein is an intramolecular dehydrogenative coupling of two inert aryl C-H bonds for the synthesis of aporphine analogues. The process represents a novel tool for the preparation of aporphines via palladiun-catalyzed C-H bond activation. The present reaction is compatible with various functional groups, and the coupling products have been further applied for the synthesis of natural products aporphine and zenkerine.
Assuntos
Aporfinas , Paládio , CatáliseRESUMO
The fine nanopillars on the natural cicada wing, which exhibits outstanding superhydrophobicity and anti-reflectivity, are carefully observed and analyzed. Here, a promising strategy by combining anodic aluminum oxide template and hot embossing is proposed for rapidly and efficiently mimicking the orderly and densely arranged nanopillars on the cicada wing surface to polypropylene (PP) surfaces. By adjusting the compression pressure, the nanostructures on the PP replica surface gradually evolve from nanoprotrusion-like features to nanopillar-like features so that a gradient wetting behavior from hydrophilicity to hydrophobicity and further to superhydrophobicity appears on the PP replica surfaces. Specifically, the biomimetic PP replica surface exhibits a contact angle of 159 ± 3° and a rolling angle of 8 ± 3° at a compression pressure of 15 MPa. Moreover, the biomimetic PP replica surface can stabilize its superhydrophobic state under a 1.96 kPa external pressure during the dynamic droplet impact. Besides robust dynamic superhydrophobicity, the biomimetic PP replica surface also demonstrated excellent anti-reflectivity because of the gradually changed effective refractive index. Therefore, the biomimetic PP replica inherits both the superhydrophobicity and anti-reflectivity of the natural cicada wing, which makes the products can effectively reduce the external damage when applied to agricultural films, dustproof films, and packaging materials.
RESUMO
The proinflammatory cytokine IL-1ß plays critical roles in inflammatory and autoimmune diseases. IL-1ß signaling is tightly regulated to avoid excessive inflammatory response. In this study, we identified the E3 ubiquitin ligase membrane-associated RING-CH-type finger 3 (MARCH3) as a critical negative regulator of IL-1ß-triggered signaling. Overexpression of MARCH3 inhibited IL-1ß-triggered activation of NF-κB as well as expression of inflammatory genes, whereas MARCH3 deficiency had the opposite effects. MARCH3-deficient mice produced higher levels of serum inflammatory cytokines and were more sensitive to inflammatory death upon IL-1ß injection or Listeria monocytogenes infection. Mechanistically, MARCH3 was associated with IL-1 receptor I (IL-1RI) and mediated its K48-linked polyubiquitination at K409 and lysosomal-dependent degradation. Furthermore, IL-1ß stimulation triggered dephosphorylation of MARCH3 by CDC25A and activation of its E3 ligase activity. Our findings suggest that MARCH3-mediated IL-1RI degradation is an important mechanism for attenuating IL-1ß-triggered inflammatory response.
Assuntos
Inflamação/metabolismo , Interleucina-1beta/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Listeriose/patologia , Receptores Tipo I de Interleucina-1/metabolismo , Animais , Regulação da Expressão Gênica , Interleucina-1beta/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Listeria monocytogenes , Camundongos , Camundongos Knockout , Fosforilação , Receptores Tipo I de Interleucina-1/genética , Tirosina , UbiquitinaçãoRESUMO
Eukaryotic cilia and flagella are evolutionarily conserved organelles that protrude from the cell surface. The unique location and properties of cilia allow them to function in vital processes such as motility and signaling. Ciliary assembly and maintenance rely on intraflagellar transport (IFT). Bidirectional movement of IFT particles composed of IFT-A and IFT-B complexes is powered by kinesin-2 and dynein-2 motors. IFT delivers building blocks between their site of synthesis in the cell body and the ciliary assembly site at the tip of the cilium. The integrity of the flagellum, a specialized organelle of mammalian sperm to generate the motility, is critical for normal sperm function. Recent findings suggest that IFT is indispensable for sperm flagellum formation and male fertility in mice and human. In this review, we summarize the role and mechanisms of IFT proteins during enflagellation in spermiogenesis, thereby discussing the pathological mechanisms of male infertility and providing theoretical basis for the diagnosis and treatment of male infertility.
Assuntos
Flagelos , Cinesinas , Animais , Transporte Biológico , Cílios/metabolismo , Flagelos/metabolismo , Cinesinas/metabolismo , Masculino , Camundongos , EspermatogêneseRESUMO
This study explored the molecular mechanism underlying the Gegen Qinlian Decoction(GQD) promoting the differentiation of brown adipose tissue(BAT) to improve glucose and lipid metabolism disorders in diabetic rats. After the hypoglycemic effect of GQD on diabetic rats induced by high-fat diet combined with a low dose of streptozotocin was confirmed, the total RNA of rat BAT around scapula was extracted. Nuclear transcription genes Prdm16, Pparγc1α, Pparα, Pparγ and Sirt1, BAT marker genes Ucp1, Cidea and Dio2, energy expenditure gene Ampkα2 as well as BAT secretion factors Adpn, Fndc5, Angptl8, IL-6 and Rbp4 were detected by qPCR, then were analyzed by IPA software. Afterward, the total protein from rat BAT was extracted, and PRDM16, PGC1α, PPARγ, PPARα, SIRT1, ChREBP, AMPKα, UCP1, ADPN, NRG4, GLUT1 and GLUT4 were detected by Western blot. The mRNA expression levels of Pparγc1α, Pparα, Pparγ, Ucp1, Cidea, Ampkα2, Dio2, Fndc5, Rbp4 and Angptl8 were significantly increased(P<0.05) and those of Adpn and IL-6 were significantly decreased(P<0.05) in the GQD group compared with the diabetic group. In addition, Sirt1 showed a downward trend(P=0.104), whereas Prdm16 tended to be up-regulated(P=0.182) in the GQD group. IPA canonical pathway analysis and diseases-and-functions analysis suggested that GQD activated PPARα/RXRα and SIRT1 signaling pathways to promote the differentiation of BAT and reduce the excessive lipid accumulation. Moreover, the protein expression levels of PRDM16, PGC1α, PPARα, PPARγ, SIRT1, ChREBP, AMPKα, UCP1, GLUT1, GLUT4 and NRG4 were significantly decreased in the diabetic group(P<0.01), which were elevated after GQD intervention(P<0.05). Unexpectedly, the expression of ADPN protein in the diabetic group was up-regulated(P<0.01) as compared with the control group, which was down-regulated after the administration with GQD(P<0.01). This study indicated that GQD promoted BAT differentiation and maturity to increase energy consumption, which reduced the glucose and lipid metabolism disorders and thereby improved diabetes symptoms.
Assuntos
Diabetes Mellitus Experimental , Transtornos do Metabolismo dos Lipídeos , Tecido Adiposo Marrom , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/genética , Medicamentos de Ervas Chinesas , Fibronectinas , Glucose , Metabolismo dos Lipídeos , RatosRESUMO
The construction route of organic superacids from the combination of organic superhalogens and protons is verified to be a rational one based on a systematic theoretical study covering different planar conjugated backbones, e.g., [C5H5]- and [BC5H6]-, and electron-withdrawing substituents, e.g., -F, -CN and -NO2. In both the gas phase and the solution phase, the acidities of the composites here have a consistent strengthening with the increase of the vertical electron detachment energy of the superhalogen part. Decomposition of the acidity into different contributions further verifies the dominant role of the superhalogen part in the variation of the acidity. Thus, tuning of the acidity of systems of this type could be achieved via rational design of the constituent part of the superhalogen. That is to say, the design of a novel organic superacid with enhanced properties could be guided by the search for a new strong superhalogen of organic nature eventually. Having provided important contributions to the topic of superhalogens, theoretical calculation should be trusted to provide useful guidance for the research of organic superacids and could be expected to promote related experimental studies in the near future.
RESUMO
The nickel-catalyzed decarbonylation of unstrained diaryl ketones has been developed. The reaction is catalyzed by a combination of Ni(cod)2 and an electron-rich N-heterocyclic carbene ligand. High functional group tolerance and excellent yields (up to 98%) are observed. This strategy provides an alternative and versatile approach to construct biaryls using an inexpensive nickel catalyst.
RESUMO
Great effort has recently been devoted to the preparation of nanoscale surfaces on titanium-based implants to achieve clinically fast osteoinduction and osseointegration, which relies on the unique characteristics of the nanostructure. In this work, we used induction heating treatment (IHT) as a rapid oxidation method to fabricate a porous nanoscale oxide layer on the Ti6Al4V surface for better medical application. Well-distributed vertical nanopillars were yielded by IHT for 20-35 s on the alloy surface. The composition of the oxides contained rutile/anatase TiO2 and a small amount of Al2O3 between the TiO2 grain boundaries (GBs). This technology resulted in a reduction and subsequent increase of surface roughness of 26-32 nm when upregulating the heating time, followed by the successive enhancement of the thickness, wettability and adhesion strength of the oxidation layer to the matrix. The surface hardness also distinctly rose to 554 HV in the IHT-35 s group compared with the 350 HV of bare Ti6Al4V. The massive small-angle GBs in the bare alloy promoted the formation of nanosized oxide crystallites. The grain refinement and deformation texture reduction further improved the mechanical properties of the matrix after IHT. Moreover, in vitro experiments on a mesenchymal stem cell (BMSC) culture derived from human bone marrow for 1-7 days indicated that the nanoscale layers did not cause cytotoxicity, and facilitated cell differentiation in osteoblasts by enhancing the gene and osteogenesis-related protein expressions after 1-3 weeks of culturing. The increase of the IHT time slightly advanced the BMSC proliferation and differentiation, especially during long-term culture. Our findings provide strong evidence that IHT oxidation technology is a novel nanosurface modification technology, which is potentially promising for further clinical development.
Assuntos
Diferenciação Celular , Calefação , Células-Tronco Mesenquimais/citologia , Nanopartículas/química , Osteogênese , Titânio/química , Fosfatase Alcalina/metabolismo , Ligas , Adesão Celular , Proliferação de Células , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Humanos , Nanopartículas/ultraestrutura , Oxirredução , Óxidos/química , Espectroscopia Fotoeletrônica , Termodinâmica , Molhabilidade , Difração de Raios XRESUMO
A series of 27 composite structures, consisting of superhalogen and Brønsted acid, is designed and systematically studied based on combined ab initio and DFT calculations focusing on their potentials as novel superacids. As indicated by high-level CCSD(T) results, all the composites here fulfill the theoretical criterion for superacid and the acidities of two of them are close to the strongest superacid ever reported. The influences of various factors on the superacid properties of these composites were analyzed in detail. Our results demonstrate that the acidity of these superacids is mainly determined by the superhalogen components while the effect of Brønsted acids, irrespective of their number or type, is relatively mild. Therefore, it is probable to design novel composite superacid with enhanced property through the regulation of the superhalogen component. It is encouraging that MP2 and DFT could also provide reliable results when compared with the high-level CCSD(T) method. The reliability of these low-cost methods implies the capability of theoretical calculations for future composite superacid of enlarged size, and thus it is highly probable that an effective guide to the related experimental research could be provided by the theory.
RESUMO
Metal tetraoxygen molecules (MO4, M = Fe, Ru, Os, Hs, Sm, Pu) of all metal atoms M with eight valence electrons are theoretically studied using density functional and correlated wave function approaches. The heavier d-block elements Ru, Os, Hs are confirmed to form stable tetraoxides of Td symmetry in (1)A1 electronic states with empty metal d(0) valence shell and closed-shell O(2-) ligands, while the 3d-, 4f-, and 5f-elements Fe, Sm, and Pu prefer partial occupation of their valence shells and peroxide or superoxide ligands at lower symmetry structures with various spin couplings. The different geometric and electronic structures and chemical bonding types of the six iso-stoichiometric species are explained in terms of atomic orbital energies and orbital radii. The variations found here contribute to our general understanding of the periodic trends of oxidation states across the periodic table.
RESUMO
It is explicitly verified that the atomic 7p(1) ground-state configuration of Lr originates from relativistic effects. Without relativity one has 6d(1). All three ionization potentials IP1-3 of Lr resemble those of Lu. Simple model studies on mono- and trihydrides, monocarbonyls or trichlorides suggest no major chemical differences between Lr and the lanthanides.
RESUMO
Solar power is a strong alternative to the currently used fossil fuels in order to satisfy the world's energy needs. Among them, dye-sensitized solar cells (DSSC) represent a low-cost option. Efficient and cheap dyes are currently needed to make DSSCs competitive. Computational chemistry can be used to guide the design of new light-absorbing chromophores. Here, we have computationally studied the lowest excited states of ZnPBAT, which is a recently synthesized porphyrinoid chromophore with high light-absorption efficiency. The calculations have been performed at ab initio correlated levels of theory employing second-order coupled clusters (CC2) and algebraic diagrammatic construction using second order (ADC(2)) methods and by performing density functional theory (DFT) calculations using the time-dependent DFT (TDDFT) approach for excitation energies. The ultraviolet-visible (UV-vis) spectrum calculated at the ADC(2) and CC2 levels agrees well with the experimental one. The calculations show that ZnPBAT has six electronic transitions in the visible range of the absorption spectrum. The ab initio correlated calculations and previously reported experimental data have been used to assess the performance of several well-known density functionals that have been employed in the present TDDFT study. Solvent effects have been estimated by using the conductor-like screening model (COSMO). The influence of the addition of a TiO2 cluster to the chromophore systems has also been investigated. The results indicate that both CAM-B3LYP and Becke's "half-and-half" (BHLYP) density functionals are appropriate for the studies of excitation energies in the blue range of the visible spectrum for these kinds of porphyrinoid chromophores, whereas the excitation energies of the Q band calculated at the ab initio correlated level are more accurate than those obtained in the present TDDFT calculations. The inclusion of solvent effects has a modest influence on the spectrum of the protonated form of the studied chromophores, whereas solvent models are crucial when studying the absorption spectrum of the anionic chromophore. The calculated UV-vis spectrum for the chromophore anion is not significantly affected by attaching a TiO2 cluster to it.
RESUMO
High throughput sequencing technology is also called Next Generation Sequencing (NGS), which can sequence hundreds and thousands sequences in different samples at the same time. In the present study, the culture-independent high throughput sequencing technology was applied to sequence the fungi metagenomic DNA of the fungal internal transcribed spacer 1(ITS 1) in the root of Sinopodophyllum hexandrum. Sequencing data suggested that after the quality control, 22 565 reads were remained. Cluster similarity analysis was done based on 97% sequence similarity, which obtained 517 OTUs for the three samples (LD1, LD2 and LD3). All the fungi which identified from all the reads of OTUs based on 0.8 classification thresholds using the software of RDP classifier were classified as 13 classes, 35 orders, 44 family, 55 genera. Among these genera, the genus of Tetracladium was the dominant genera in all samples(35.49%, 68.55% and 12.96%).The Shannon's diversity indices and the Simpson indices of the endophytic fungi in the samples ranged from 1.75-2.92, 0.11-0.32, respectively.This is the first time for applying high through put sequencing technol-ogyto analyze the community composition and diversity of endophytic fungi in the medicinal plant, and the results showed that there were hyper diver sity and high community composition complexity of endophytic fungi in the root of S. hexandrum. It is also proved that the high through put sequencing technology has great advantage for analyzing ecommunity composition and diversity of endophtye in the plant.
Assuntos
Berberidaceae/microbiologia , Florestas , Fungos/classificação , Raízes de Plantas/microbiologia , Microbiologia do Solo , Biodiversidade , China , DNA Fúngico , Endófitos/classificação , Sequenciamento de Nucleotídeos em Larga Escala , MetagenomaRESUMO
Lung cancer is the leading cause of cancer-related death worldwide. Transforming growth factor-ß receptor II (TGF-ßRII) plays an important role in the regulation of proliferation and progression in cancer. Statins have been documented to exhibit anticancer and cancer chemopreventive properties. However, the effects and mechanisms of simvastatin on the development of lung cancer are still unclear. In the present study, quiescent A549 cells were treated in vitro with fetal bovine serum (FBS) in the presence or absence of simvastatin. MTT, Western blot, and real-time qPCR were used to detect cell viability, activation of ERK, and expression of TGF-ßRII at the protein and RNA level. Our results demonstrated that simvastatin inhibited activation of ERK, downregulated expression of TGF-ßRII, and suppressed A549 cell proliferation. Furthermore, the effects of simvastatin can be reversed by farnesyl pyrophosphate (FPP). Therefore, these results suggest that simvastatin may inhibit A549 cell proliferation and downregulate TGF-ßRII expression by inhibiting activation of ERK. Our findings may advance the current understanding of the effects of simvastatin on cancer progression and contribute to the study of cancer treatment.
Assuntos
MAP Quinases Reguladas por Sinal Extracelular/biossíntese , Neoplasias Pulmonares/tratamento farmacológico , Proteínas Serina-Treonina Quinases/biossíntese , Receptores de Fatores de Crescimento Transformadores beta/biossíntese , Sinvastatina/administração & dosagem , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Fosfatos de Poli-Isoprenil/administração & dosagem , Proteínas Serina-Treonina Quinases/genética , Receptor do Fator de Crescimento Transformador beta Tipo II , Receptores de Fatores de Crescimento Transformadores beta/genética , Sesquiterpenos/administração & dosagemRESUMO
It has recently been suggested that the oxidation states of Ir run from the putative -III in the synthesized solid Na3 [Ir(CO)3 ] to the well-documented +IX in the species IrO4 (+) . Furthermore, [Ir(CO)3 ](3-) was identified as an 18-electron species. A closer DFT study now finds support for this picture: The orbitals spanned by the 6s,6p,5d orbitals of the iridium are all occupied. Although some have considerable ligand character, the deviations from 18 e leave the orbital symmetries unchanged. The isoelectronic systems from Os(-IV) to Au(-I) behave similarly, suggesting further possible species. To paraphrase Richardâ P. Feynmann "there is plenty of room at the bottom".
RESUMO
The contents of two lignans, namely 4'-demethylpodophyllotoxin and podophyllotoxin in cultivated and wild Sinopodophyllum hexandrum plants were extracted by ultrasonicaction and determined by HPLC. According to the result showed, the order of parts of cultivated plants containing 4'-demethylpodophyllotoxin from high to low is as follows: stem > root, no 4'-demethypodophyllotoxin was detected in leaves of cultivated plants; The order of parts of wild plants 4'-demethylpodophyllotoxin from high to low is as follows: lateral root > petiole > rhizome > leaf, no 4'-demethypodophyllotoxin was detected in fruit. The order of parts of cultivated and wild S. hexandrum containing podophyllotoxin from high to low is as follows: root > petiole > leaf ( > fruit). Both of the lignan contents in different parts of cultivated plant varied in a " W" curve with the changes in seasons, with the highest content in July.