Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Sensors (Basel) ; 22(13)2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35808475

RESUMO

With the widespread use of multifunction radars (MFRs), it is hard for the traditional radar signal recognition technology to meet the needs of current electronic intelligence systems. For signal recognition of an MFR, it is necessary to identify not only the type or individual of the emitter but also its current state. Existing methods identify MFR states through hierarchical modeling, but most of them rely heavily on prior information. In the paper, we focus on the MFR state recognition with actual intercepted MFR signals and develop it by introducing recurrent neural networks (RNNs) of deep learning into the modeling of MFR signals. According to the layered MFR signal architecture, we propose a novel end-to-end state recognition approach with two RNNs' connections. This approach makes full use of RNNs' ability to directly tackle corrupted data and automatically learn the features from input data. So, it is practical and less dependent on prior information. In addition, the hierarchical modeling method applied to the end-to-end network effectively restricts the scale of the end-to-end model so that the model can be trained with a small amount of data. Simulation results on a real MFR show the excellent recognition performance of our end-to-end approach with little prior information.


Assuntos
Aprendizado Profundo , Simulação por Computador , Redes Neurais de Computação , Radar
2.
Proc Natl Acad Sci U S A ; 111(9): 3371-6, 2014 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-24550499

RESUMO

Simian virus 40 (SV40) large tumor antigen (LT) triggers oncogenic transformation by inhibition of key tumor suppressor proteins, including p53 and members of the retinoblastoma family. In addition, SV40 transformation requires binding of LT to Cullin 7 (CUL7), a core component of Cullin-RING E3 ubiquitin ligase 7 (CRL7). However, the pathomechanistic effects of LT-CUL7 interaction are mostly unknown. Here we report both in vitro and in vivo experimental evidence that SV40 LT suppresses the ubiquitin ligase function of CRL7. We show that SV40 LT, but not a CUL7 binding-deficient mutant (LT(Δ69-83)), impaired 26S proteasome-dependent proteolysis of the CRL7 target protein insulin receptor substrate 1 (IRS1), a component of the insulin and insulin-like growth factor 1 signaling pathway. SV40 LT expression resulted in the accumulation and prolonged half-life of IRS1. In vitro, purified SV40 LT reduced CRL7-dependent IRS1 ubiquitination in a concentration-dependent manner. Expression of SV40 LT, or depletion of CUL7 by RNA interference, resulted in the enhanced activation of IRS1 downstream signaling pathways phosphatidylinositol-3-kinase/AKT and Erk mitogen-activated pathway kinase, as well as up-regulation of the downstream target gene c-fos. Finally, SV40 LT-positive carcinoma of carcinoembryonic antigen 424/SV40 LT transgenic mice displayed elevated IRS1 protein levels and activation of downstream signaling. Taken together, these data suggest that SV40 LT protects IRS1 from CRL7-mediated degradation, thereby sustaining high levels of promitogenic IRS1 downstream signaling pathways.


Assuntos
Antígenos Virais de Tumores/metabolismo , Proteínas Culina/antagonistas & inibidores , Proteínas Substratos do Receptor de Insulina/metabolismo , Transdução de Sinais/fisiologia , Vírus 40 dos Símios/química , Análise de Variância , Animais , Proteínas Culina/metabolismo , Eletroforese em Gel de Poliacrilamida , Células HEK293 , Humanos , Imunoprecipitação , Camundongos , Camundongos Transgênicos , Microscopia , Microscopia de Fluorescência , Proteólise , Interferência de RNA , Vírus 40 dos Símios/metabolismo , Ubiquitina/metabolismo
3.
Mol Cell ; 30(4): 403-14, 2008 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-18498745

RESUMO

Recent genetic studies have documented a pivotal growth-regulatory role played by the Cullin 7 (CUL7) E3 ubiquitin ligase complex containing the Fbw8-substrate-targeting subunit, Skp1, and the ROC1 RING finger protein. In this report, we identified insulin receptor substrate 1 (IRS-1), a critical mediator of the insulin/insulin-like growth factor 1 signaling, as a proteolytic target of the CUL7 E3 ligase in a manner that depends on mammalian target of rapamycin and the p70 S6 kinase activities. Interestingly, while embryonic fibroblasts of Cul7-/- mice were found to accumulate IRS-1 and exhibit increased activation of IRS-1's downstream Akt and MEK/ERK pathways, these null cells grew poorly and displayed phenotypes reminiscent of those associated with oncogene-induced senescence. Taken together, our findings demonstrate a key role for the CUL7 E3 in targeting IRS-1 for degradation, a process that may contribute to the regulation of cellular senescence.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Culina/metabolismo , Ubiquitina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Linhagem Celular , Senescência Celular , Proteínas Culina/genética , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Humanos , Proteínas Substratos do Receptor de Insulina , Camundongos , Camundongos Knockout , Fenótipo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR
4.
Nat Genet ; 37(10): 1119-24, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16142236

RESUMO

Intrauterine growth retardation is caused by maternal, fetal or placental factors that result in impaired endovascular trophoblast invasion and reduced placental perfusion. Although various causes of intrauterine growth retardation have been identified, most cases remain unexplained. Studying 29 families with 3-M syndrome (OMIM 273750), an autosomal recessive condition characterized by severe pre- and postnatal growth retardation, we first mapped the underlying gene to chromosome 6p21.1 and then identified 25 distinct mutations in the gene cullin 7 (CUL7). CUL7 assembles an E3 ubiquitin ligase complex containing Skp1, Fbx29 (also called Fbw8) and ROC1 and promotes ubiquitination. Using deletion analysis, we found that CUL7 uses its central region to interact with the Skp1-Fbx29 heterodimer. Functional studies indicated that the 3-M-associated CUL7 nonsense and missense mutations R1445X and H1464P, respectively, render CUL7 deficient in recruiting ROC1. These results suggest that impaired ubiquitination may have a role in the pathogenesis of intrauterine growth retardation in humans.


Assuntos
Cromossomos Humanos Par 6/genética , Proteínas Culina/genética , Retardo do Crescimento Fetal/genética , Proteínas de Transporte/metabolismo , Criança , Mapeamento Cromossômico , Códon sem Sentido , Análise Mutacional de DNA , Feminino , Homozigoto , Humanos , Masculino , Mutação de Sentido Incorreto , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , Proteínas Quinases Associadas a Fase S/metabolismo , Proteínas Ligases SKP Culina F-Box/metabolismo , Deleção de Sequência , Síndrome
5.
J Biol Chem ; 287(48): 40758-66, 2012 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-23045529

RESUMO

BACKGROUND: Negative feedback regulation of insulin signaling involves ubiquitin-dependent degradation of insulin receptor substrate 1 (IRS1). RESULTS: Cullin-RING E3 ubiquitin ligase 7 (CRL7) mediates the ubiquitination of IRS1 in hyperphosphorylated form. CONCLUSION: Multisite IRS1 phosphorylation triggers interactions with CRL7 for ubiquitin modification. SIGNIFICANCE: Insulin signaling is self-restrained when its downstream effector kinases are hyperactivated to trigger the negative feedback inhibition. Hyperactivation of mechanistic target of rapamycin complex 1 (mTORC1) and its effector kinase S6 kinase 1 (S6K1) is known to trigger multisite seryl phosphorylation of insulin receptor substrate 1 (IRS1), leading to its ubiquitination and degradation. This negative feedback inhibition functions to restrain PI3K activity and plays critical roles in the pathogenesis of cancer and type II diabetes. Recent work has implicated a role for cullin-RING E3 ubiquitin ligase 7 (CRL7) in targeting IRS1 for mTORC1/S6K1-dependent degradation. In the present study we have employed both cell-based degradation and reconstituted ubiquitination approaches to define molecular features associated with IRS1 critical for CRL7-mediated ubiquitination and degradation. We have mapped IRS1 degradation signal sequence to its N-terminal 574 amino acid residues, of which the integrity of Ser-307/Ser-312 and Ser-527, each constituting a S6K1 phosphorylation consensus site, was indispensible for supporting CRL7-forced degradation. In vitro, S6K1 was able to support the ubiquitination of bacterially expressed IRS1 N-terminal fragment by CRL7 but at low levels. In contrast, CRL7 supported efficient ubiquitination of IRS1 N-terminal fragment in hyperphosphorylated form, which was isolated from infected insect cells, suggesting requirement of additional phosphorylation by kinases yet to be identified. Finally, removal of IRS1 amino acids 1-260 led to substantial reduction of ubiquitination efficiency, suggesting a role for this region in mediating productive interactions with CRL7. The requirement of multisite phosphorylation and the N terminus of IRS1 for its turnover may ensure that complete IRS1 degradation occurs only when mTORC1 and S6K1 reach exceedingly high levels.


Assuntos
Proteínas Substratos do Receptor de Insulina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Humanos , Insulina/metabolismo , Proteínas Substratos do Receptor de Insulina/genética , Fosforilação , Proteólise , Transdução de Sinais , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
6.
Mol Cell Biol ; 27(21): 7615-22, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17785450

RESUMO

Skp2B, an F-box protein of unknown function, is frequently overexpressed in breast cancer. In order to determine the function of Skp2B and whether it has a role in breast cancer, we performed a two-hybrid screen and established transgenic mice expressing Skp2B in the mammary glands. We found that Skp2B interacts with the repressor of estrogen receptor activity (REA) and that overexpression of Skp2B leads to a reduction in REA levels. In the mammary glands of MMTV-Skp2B mice, REA levels are also low. Our results show that in virgin transgenic females, Skp2B induces lobuloalveolar development and differentiation of the mammary glands normally observed during pregnancy. As this phenotype is identical to what was observed for REA heterozygote mice, our observations suggest that the Skp2B-REA interaction is physiologically relevant. However, in contrast to REA(+/-) mice, MMTV-Skp2B mice develop mammary tumors, suggesting that Skp2B affects additional proteins. These results indicate that the observed expression of Skp2B in breast cancer does contribute to tumorigenesis at least in part by modulating the activity of the estrogen receptor.


Assuntos
Glândulas Mamárias Animais/crescimento & desenvolvimento , Receptores de Estrogênio/antagonistas & inibidores , Proteínas Repressoras/antagonistas & inibidores , Proteínas Quinases Associadas a Fase S/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Animais , Diferenciação Celular , Cistos/patologia , Feminino , Humanos , Hiperplasia , Glândulas Mamárias Animais/patologia , Vírus do Tumor Mamário do Camundongo , Camundongos , Camundongos Transgênicos , Neoplasias/patologia , Proibitinas , Ligação Proteica , Receptores de Estrogênio/genética , Comportamento Sexual , Maturidade Sexual , Transcrição Gênica , Ubiquitina/metabolismo
7.
Cell Cycle ; 7(20): 3154-61, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18927510

RESUMO

Cullin7 (CUL7) is a molecular scaffold that organizes an E3 ubiquitin ligase containing the F-box protein Fbw8, Skp1 and the ROC1 RING finger protein. Dysregulation of the CUL7 E3 Ligase has been directly linked to hereditary human diseases as cul7 germline mutations were found in patients with autosomal-recessive 3-M and Yakuts short stature syndromes, which are characterized by profound pre- and postnatal growth retardation. In addition, genetic ablation of CUL7 in mice resulted in intrauterine growth retardation and perinatal lethality, underscoring its importance for growth regulation. The recent identification of insulin receptor substrate 1, a critical mediator of insulin and insulin-like growth factor-1 signaling, as the proteolytic target of the CUL7 E3 ligase, provided a molecular link between CUL7 and a well-established growth regulatory pathway. This result, coupled with other studies demonstrating interactions between CUL7 and the p53 tumor suppressor protein, as well as the simian virus 40 large T antigen oncoprotein, further implicated CUL7 as a novel player in growth control and suggested pathomechanistic insights into CUL7-linked growth retardation syndromes.


Assuntos
Proteínas Culina/metabolismo , Animais , Proteínas Culina/genética , Ciclina D1/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Humanos , Proteínas Substratos do Receptor de Insulina/metabolismo , Camundongos , Transdução de Sinais/fisiologia , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa