Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
RSC Adv ; 14(1): 266-277, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38173580

RESUMO

Steel hydrochloric acid pickling sludge (SHPS), containing the heavy metals Fe, Zn, and Ni and a high chloride salt content, is considered a hazardous solid waste. With the gradual reduction of high-grade metal mineral resources such as Fe, Zn and Ni, it is particularly urgent to recycle valuable metals such as Fe, Zn and Ni in solid waste SHPS in order to realize the resource utilization of SHPS and reduce the environmental harm caused by SHPS. In addition, SHPS usually contains different amounts of alkali chloride, which will have a serious adverse impact on the subsequent extraction and smelting process of Fe, Zn and other metals. Therefore, the removal of chloride plays an important role in the resource utilization of valuable metals in SHPS. Thus, in this study, the effects of water washing dechlorination process parameters such as liquid-solid (L/S) ratio, SHPS particle size, washing time and washing frequency on the chloride removal rate were investigated. The best experimental parameters of SHPS washing were obtained. At the same time, the microscopic morphology and crystal phase composition of SHPS before and after washing were explored. The results showed that the optimized conditions were as follows: room temperature, a L/S ratio of 3 : 1, an SHPS particle size of 100 mesh, and 10 min of water washing, repeated two or three times; under these conditions, the removal rate of Cl, Na, Ca, K, Mg, and S reached 96.64-99.68%, 97.38-99.89%, 36.40-60.37%, 49.11-54.82%, 39.18-40.22%, and 36.98-42.13% respectively. The contents of Cl, K, and Na in filter residue (FR) meets the requirements in GB/T 36144-2018 and GB/T 32545-2016. Conversely, the contents of Fe, Zn, Mn and Ni in the FR are enriched, which is more conducive to the subsequent resource utilization of SHPS. The scanning electron microscope (SEM) image shows the particle size of the FR particles is reduced after washing. The X-ray diffractometer (XRD) results proved that the chlorine salt content in the FR after washing was significantly reduced, the diffraction peaks of Al2O3 appeared in the FR, and the diffraction peak intensity of CaCO3, Fe2O3 and SiO2 increased.

2.
ACS Omega ; 7(16): 13826-13840, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35559134

RESUMO

Steel hydrochloric acid pickling sludge (SHPS), containing the heavy metals Fe, Zn, and Ni and a high chloride salt content, is considered a type of hazardous solid waste because of its potential harm to human health and the environment. In addition, the SHPS yield is large, but the main treatment currently used is only safe for landfills. Although studying the composition and leaching toxicity of SHPS is of great importance, only a small amount of related literature is available. This paper can help compensate for this deficiency. SHPS is analyzed from the aspects of its formation mechanism, pH, moisture content, elemental concentration, phase composition, microstructure, and leaching toxicity. The results show that its pH ranges from 2.25 to 11.11, and the moisture content ranges from 45.47% to 83.34%. Additionally, the concentration of Fe is the highest, with values from 29.80% to 50.65%, while other alkali metal elements, namely, Ca, K, and Na, have values of 0.36% to 23.07%, 0.02% to 19.82%, and 0.38% to 3.31%, respectively. Heavy metal elements, namely, Zn, Ni, Mn, Cr, and Pb, have values of 0.02% to 14.88%, 0.001% to 0.05%, 0.03% to 0.38%, 0.01% to 0.09%, and 0.02% to 0.19%, respectively. Anions, namely, SO4 2-, Cl-, F-, and NO3 -, have contents of 0.09% to 0.34%, 0.54% to 5.73%, 0.001% to 0.04%, and 0.01% to 0.15%, respectively. X-ray diffraction (XRD) analysis shows that Fe and Zn are mainly present in oxides, Ca is present as CaO and CaCO3, and chlorine is present in NaCl. Moreover, scanning electron microscopy (SEM) analysis shows that the microscopic structure consists mainly of bright and fluffy irregular spheres; stripes; flakes; and dark, very small irregular particles. The leaching toxicity test based on HJ/T 299-2007 (China) was performed, where SHPS samples were treated with a mixed solution of sulfuric acid, nitric acid, and pure water (pH = 3.20 ± 0.05) at a liquid-to-solid ratio of 10:1 for a period of 18 h. The leachate was filtered and analyzed for Cr, Ni, Mn, Zn, etc. The leaching results indicate that Zn and Ni are the main elements that cause SHPS to be hazardous to the environment. These research results can provide a reference for later researchers studying the effective treatment of SHPS, such as more effective treatments for reducing toxicity and resource utilization.

3.
ACS Omega ; 7(21): 17963-17975, 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35664575

RESUMO

The neutralization process of carbon steel pickling wastewater produces a large amount of steel hydrochloric acid pickling sludge (SHPS), and improper treatment of this sludge poses a serious threat to the environment. Considering that SHPS contains a large amount of iron oxide and given the huge demand for iron concentrate in China's ironmaking industry, refining iron oxide in SHPS into iron concentrate will have great environmental and economic benefits. This paper proposes a new method that uses biomass (corncob) to replace conventional coal-based reductants for the recovery of iron components in SHPS to simultaneously utilize two kinds of solid waste resources. Factors that affect the iron recovery rate and iron grade of SHPS, such as the reaction temperature, corncob dosage, residence time, and magnetic field strength, were studied using a fixed bed and a magnetic separator. These studies were combined with thermodynamic analysis, thermogravimetric analysis, X-ray diffraction, inductively coupled plasma-mass spectrometry, gas chromatography, etc. The results showed that when the reaction temperature was 680 °C, the corncob dosage was 5%, the residence time was 20 min, and the magnetic field strength was 200 mT, the recovery rate of iron reached 91.83%, and the iron grade of the recovered products was 67.72%, meeting the level I requirements in GB/T 32545-2016. Based on this result, a process involving SHPS reduction roasting with corncob pyrolysis reducing gas-magnetic separation was established to recover iron from SHPS. This process not only effectively utilizes the iron oxide in SHPS by converting it into iron concentrate powder for the ironmaking industry but also proves that the pyrolysis gas of corncob has good reduction ability.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa