RESUMO
BACKGROUND: Postoperative cognitive dysfunction (POCD) is common following surgery in elderly patients. The role of the preoperative gut microbiota in POCD has attracted increasing attention, but the potential underlying mechanisms remain unclear. This research aimed to investigate the impact of the preoperative gut microbiota on POCD. METHODS: Herein, we analyzed the preoperative gut microbiota of POCD patients through a prospective specimen collection and retrospective blinded evaluation study. Then, we transferred the preoperative gut microbiota of POCD patients to antibiotic-treated rats and established POCD model by abdominal surgery to explore the impact of the preoperative gut microbiota on pre- and postoperative cognitive function and systemic inflammation. The gut microbiota was analyzed using 16S rRNA sequencing analysis. The Morris water maze test was performed to evaluate learning and memory abilities. The inflammatory cytokines TNF-α, IL-1ß and IL-6 in the serum and hippocampus were measured by ELISA. Microglia were examined by immunofluorescence staining for Iba-1. RESULTS: Based on the decrease in the postoperative MMSE score, 24 patients were identified as having POCD and were matched with 24 control patients. Compared with control patients, POCD patients exhibited higher BMI and lower preoperative MMSE score. The preoperative gut microbiota of POCD patients had lower bacterial richness but a larger distribution, decreased abundance of Firmicutes and increased abundance of Proteobacteria than did that of control patients. Compared with rats that received preoperative fecal samples of control patients, rats that received preoperative fecal samples of POCD patients presented an increased abundance of Desulfobacterota, decreased cognitive function, increased levels of TNF-α and IL-1ß in the serum, increased levels of TNF-α and greater microglial activation in the hippocampus. Additionally, correlation analysis revealed a positive association between the abundance of Desulfobacterota and the level of serum TNF-α in rats. Then, we performed abdominal surgery to investigate the impact of the preoperative gut microbiota on postoperative conditions, and the surgery did indeed cause POCD and inflammatory response. Notably, compared with rats that received preoperative fecal samples of control patients, rats that received preoperative fecal samples of POCD patients displayed exacerbated cognitive impairment; increased levels of TNF-α, IL-1ß and IL-6 in the serum and hippocampus; and increased activation of microglia in the hippocampus. CONCLUSIONS: Our findings suggest that the preoperative gut microbiota of POCD patients can induce preoperative and aggravate postoperative cognitive impairment and systemic inflammation in rats. Modulating inflammation by targeting the gut microbiota might be a promising approach for preventing POCD.
Assuntos
Microbioma Gastrointestinal , Inflamação , Complicações Cognitivas Pós-Operatórias , Microbioma Gastrointestinal/fisiologia , Animais , Ratos , Complicações Cognitivas Pós-Operatórias/etiologia , Masculino , Humanos , Feminino , Idoso , Ratos Sprague-Dawley , Pessoa de Meia-Idade , Estudos Retrospectivos , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/microbiologiaRESUMO
Morphine tolerance (MT) is currently a challenging issue related to intractable pain treatment. Studies have shown that reactive oxygen species (ROSs) derived from NADPH oxidase (NOX) and produced in response to endoplasmic reticulum (ER) stress participate in MT development. However, which NOX subtype initiates ER stress during MT development is unclear. NOX4 is mainly expressed on intracellular membranes, such as the ER and mitochondrial membranes, and its sole function is to produce ROS. Whether NOX4 is activated during MT development and the mechanisms underlying the association between NOX4 and ER stress during this process still need to be confirmed. In our study, we used the classic morphine-tolerant rat model and evaluated the analgesic effect of intrathecally injected morphine through a hot water tail-flick assay. Our research demonstrated for the first time that chronic morphine administration upregulates NOX4 expression in the spinal cord by activating three ER stress sensors, protein kinase RNA-like ER kinase (PERK), inositol-requiring enzyme 1 (IRE1) and activating transcription factor 6 (ATF6), subsequently leading to the activation of microtubule-associated protein 1 light chain 3 b (LC3B) and P62 (a well-known autophagy marker) in GABAergic neurons. Our results may suggest that regulating NOX4 and the key mechanism underlying ER stress or autophagy may be a promising strategy to treat and prevent MT development.
RESUMO
The photoinduced regio- and enantioselective coupling of naphthols and derivatives thereof is achieved in the confined chiral coordination space of a RuII metalloligand based cage. The racemic or enantiopure cages encapsulate naphthol guests, which then undergo a regiospecific 1,4-coupling, rather than the normal 1,1-coupling, to form 4-(2-hydroxy-1-naphthyl)-1,2-napthoquinones; moderate stereochemical control is achieved with homochiral cages. The photoreactions proceed under both aerobic and anaerobic conditions but through distinct pathways that nevertheless involve the same radical intermediates. This unusual dimerization constitutes a very rare example of asymmetric induction in biaryl coupling by making use of coordination cages with dual functionality-photoredox reactivity and stereoselectivity.
RESUMO
Neuropathic pain (NP) is the chronic pain in patients resulting from injuries or diseases in the somatosensory nervous system. However, effective treatment remains limited to opioids. Currently, there is an urgent need to develop new specific pharmaceuticals with low abuse potentiality. Cannabinoid receptor 2 (CB2R) is one of the significant receptors in the endocannabinoid system. It is widely expressed in the central nervous system, especially enriched in glial cells, and plays an important role in the occurrence and development of inflammation in the nervous system. CB2R activation has a neuroprotective effect on nerve injury. In this study, we report increased and more reactive microglia (with larger cell body, shorter processes, and fewer endpoints) observed in the spinal dorsal horn of spared nerve injury (SNI) rats. Continuous intrathecal administration of CB2R agonist PM226 attenuated mechanical and cold hyperalgesia in rats and prevented the transition of microglia to the proinflammatory stage. Thus, microglia transitioned into the neuroprotective stage. Meanwhile, the proinflammatory factors TNF-α and iNOS decreased, and the levels of anti-inflammatory factors Arg-1 and IL-10 increased. The content of P2X7 receptors in the spinal dorsal horn of rats increases with time after SNI. After continuous intrathecal administration of PM226, the content of P2X7 protein decreases significantly. The administration of P2X7 inhibitor A-438079 alleviated the mechanical hyperalgesia of rats, reduced the number of microglia, and decreased the content of P2X7. These results indicate that P2X7 is involved in the neuroprotective effect caused by CB2R activation. In conclusion, this study provides new insights into the neuroprotective mechanism of CB2R activation.
RESUMO
Neuropathic pain (NP) is an intractable pain that results from primary nervous system injury and dysfunction. Herein, we demonstrated in animal models that peripheral nerve injury induced enhanced pain perception and anxiety-like behaviors. According to previous reports, nucleus accumbens (NAc) shell is required for complete expression of neuropathic pain behaviors and mood alternations, we found the elevated mRNA and protein level of Prokineticin-2 (Prok2) in the NAc shell after Chronic Constriction Injury (CCI). Prok2 knockdown in the NAc shell reversed NP and anxiety-like behaviors in rats, indicating that Prok2 might play a fundamental role in NP and anxiety co-morbidity. CCI significantly enhanced Prok2 co-expression with NF-κB P-p65 in comparison with control animals. In addition to reversing the established nociceptive hypersensitivities and anxiety simultaneously, NAc microinjection of NF-κB siRNA or specific inhibitor PDTC reversed Prok2 upregulation. Besides, Prok2 was significantly decreased in vitro when co-transfected with si-NF-κB. Dual-Luciferase assay showed NF-κB directly activated Prok2 gene transcriptional activity. Overall, these findings provide new insights into the neurobiological mechanisms behind NP and comorbid anxiety. The NF-κB/Prok2 pathway could be a potential therapeutic target for NP and anxiety disorders.
RESUMO
Neuropathic pain is often accompanied by anxiety and depression-like manifestations. Many studies have shown that alterations in synaptic plasticity in the anterior cingulate cortex (ACC) play a critical role, but the specific underlying mechanisms remain unclear. Previously, we showed that cAMP response element-binding protein (CREB) in the dorsal root ganglion (DRG) acts as a transcription factor contributing to neuropathic pain development. At the same time, brain-derived neurotrophic factor (BDNF), as important targets of CREB, is intricate in neuronal growth, differentiation, as well as the establishment of synaptic plasticity. Here, we found that peripheral nerve injury activated the spinal cord and ACC, and silencing the ACC resulted in significant relief of pain sensitivity, anxiety, and depression in SNI rats. In parallel, the CREB/BDNF pathway was activated in the spinal cord and ACC. Central specific knockdown and peripheral non-specific inhibition of CREB reversed pain sensitivity and anxiodepression induced by peripheral nerve injury. Consequently, we identified cingulate CREB/BDNF as an assuring therapeutic method for treating neuropathic pain as well as related anxiodepression.
RESUMO
Inherently chiral calixarenes, whose chirality is based on the absence of a planar symmetry or an inversion center in the molecules as a whole through the asymmetric array of several achiral groups upon the three-dimensional calix-skeletons, are challenging and attractive chiral molecules, because of their potential in supramolecular chemistry. The synthesis and optical resolution of all varieties of inherently chiral calixarenes are systematically discussed and classified, and their applications in chiral recognition and asymmetric catalysis are thoroughly illustrated in this review.
Assuntos
Calixarenos/química , Catálise , Estrutura Molecular , EstereoisomerismoRESUMO
BACKGROUND: Inflammation mediated by microglia has been shown to be involved in the pathogenesis of depression. The enriched environment (EE) can improve depression-like behaviors and reduce inflammatory reactions, but it is unclear whether this is by changing the inflammatory activation phenotype of microglia. METHOD: A depression rat model was established using chronic unpredictable stress (CUS) for four weeks. The rats were then treated with EE or fluoxetine administration during the following three weeks. Behavior tests including sucrose preference, forced swimming and open field were applied to evaluate the depression-like behaviors of rats at the baseline period prior to CUS, the end of fourth week and at the end of the seventh week. Microglial activation and hippocampal neuro-inflammation were detected on postmortem using immunofluorescence, western blotting, and real-time polymerase reaction (PCR). RESULT: The results showed that severe depressive-like behavior was induced by four weeks of CUS. Changes in peripheral blood inflammatory cytokines were detected by ELISA. Immunofluorescent staining showed the IBA-1 of microglia activation marker level significantly increased in affected rats. The hippocampal microglial activation state was determined by measuring the increased levels of iNOS an M1 marker and the decreased levels of CD206, an M2 marker. The activation of NF-κB upregulation of inflammatory cytokines in the hippocampus and factors such as IL-10 were decreased. This study showed that EE and chronic fluoxetine treatment alleviated the depressive-like behavior induced by chronic stress and significantly inhibited microglial activation, activated NF-κB inflammasome and increased pro-inflammatory cytokines. CONCLUSION: EE can alleviate depression-like behavior by modulating the phenotype of microglia, inhibiting pro-inflammatory genes, and promoting anti-inflammatory genes. Furthermore, EE can effectively reduce the phosphorylation and expression levels of NF-κB.
Assuntos
Depressão , Microglia , Animais , Depressão/induzido quimicamente , Modelos Animais de Doenças , Hipocampo/metabolismo , Microglia/metabolismo , Fenótipo , Ratos , Estresse Psicológico/metabolismoRESUMO
In this work, we develop a facile route to prepare a cellulose-based adsorbent, namely carboxymethylated cellulose fiber (CMF), for the water purification. The as-prepared CMF bio-adsorbent was synthesized via a controllable carboxymethylation modification in the case of maintaining inherent fibrous framework. The CMF bio-adsorbent was applied to adsorb the heavy metal ions, such as Cu(II) and Ni(II), from aqueous solution. Results showed that the CMF adsorbent exhibited excellent adsorption capacity toward these ions and a higher selectivity for the Cu(II) removal based on surface complexation and electrostatic interaction mechanisms. Besides, the adsorption isotherm of Cu(II) fitted better with the Langmuir isotherm model. Moreover, the relationship between the charges and adsorption capacity of CMF to Cu(II) revealed that the enhanced adsorption capacity of CMF adsorbent can mainly attributed to its increased inner charges rather than surface charges, which can provide a new strategy for the further modification of cellulose-based adsorbent.
RESUMO
Porous porphyrin metal-organic frameworks (PMOFs) provide promising platforms for studying CO2 capture and conversion (C3) owing to their versatility in photoelectric, catalytic, and redox activities and porphyrin coordination chemistry. Herein, we report the C3 application of two PMOFs by engineering the coordination space through the introduction of two catalytic metalloporphyrins doped with rhodium or iridium, Rh-PMOF-1 and Ir-PMOF-1, both of which can serve as heterogeneous catalysts for the chemical fixation of CO2 into cyclic carbonates with yields of up to 99 %. Remarkably, the catalytic reactions can effectively proceed under low CO2 concentrations and high yields of 83 % and 73 % can be obtained under 5 % CO2 in the presence of Rh-PMOF-1 and Ir-PMOF-1, respectively. The synergistic effect of the metalloporphyrin ligand and the Zr6 O8 cluster, in combination with the CO2 concentration effect from the pore space, might account for the excellent catalytic performance of Rh-PMOF-1 under low CO2 concentration. Recycling tests of Rh-PMOF-1 show negligible loss of catalytic activity after 10â runs.
RESUMO
Two analogues of capsule-like fluorescent cages have been constructed by dimerization of terpyridine-containing calixarene derivatives utilizing a MII-terpyridine (M = Zn and Cd) interaction. 1H NMR spectral studies show that the self-assembled molecular capsules Zn4L12 and Cd4L12 have a highly symmetrical D 4h-structure. The encapsulation of the anticancer drug mercaptopurine in their cavities has been documented by NMR, ESI-TOF-MS, fluorescence switching, and molecular simulation, indicating that strong S-π and π-π interactions between drug and cage are of importance for the host-guest binding. The nanoscale cages exhibit excellent behaviors to control the release of mercaptopurine in phosphate buffered saline solution (pH = 7.4). These results further highlight the potential of self-assembled Zn4L12 cages for drug-carrier applications.
RESUMO
Histological differentiation is a major pathological criterion indicating the risk of tumor invasion and metastasis in patients with hepatocellular carcinoma. The degree of tumor differentiation is controlled by a complex interacting network of associated proteins. The principal aim of the present study is to identify the possible differentiation-related proteins which may be used for early diagnosis and more effective therapies. We compared poorly differentiated and well-differentiated hepatocellular carcinoma tissues by using 2-dimensional gel electrophoresis and matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Among the 11 identified protein spots, 6 were found to be upregulated in poorly differentiated hepatocellular carcinoma tissues and 5 were correspondingly downregulated. Immunohistochemistry was performed on 106 hepatocellular carcinoma tissues to confirm the results of the proteomic analysis. By using bioinformatic tools GO and STRING, these proteins were found to be related to catalytic activity, binding, and antioxidant activity. In particular, our data suggest that overexpression of peroxiredoxin-2, annexin A2, and heat shock protein ß-1 was correlated with tumor invasion, metastasis, and poor prognosis, and therefore, these proteins may serve as potential diagnostic and therapeutic biomarkers.
Assuntos
Anexina A2/genética , Carcinoma Hepatocelular/genética , Proteínas de Choque Térmico HSP27/genética , Neoplasias Hepáticas/genética , Peroxirredoxinas/genética , Adulto , Idoso , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/patologia , Diferenciação Celular/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neoplasias Hepáticas/patologia , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Metástase Neoplásica , Prognóstico , Proteoma/genéticaRESUMO
Soil washing is one of the few permanent treatment alternatives for removing metal contaminants. Ethylenediaminetetraacetic acid (EDTA) and its salts can substantially increase heavy metal removal from contaminated soils and have been extensively studied for soil washing. However, EDTA has a poor utilization ratio due to its low selectivity resulting from the competition between soil major cations and trace metal ions for chelation. The present study evaluated the potential for soil washing using EDTA and three of its derivatives: CDTA (trans-1,2-cyclohexanediaminetetraacetic acid), BDTA (benzyldiaminetetraacetic acid), and PDTA (phenyldiaminetetraacetic acid), which contain a cylcohexane ring, a benzyl group, and a phenyl group, respectively. Titration results showed that PDTA had the highest stability constants for Cu(2+) and Ni(2+) and the highest overall selectivity for trace metals over major cations. Equilibrium batch experiments were conducted to evaluate the efficacy of the EDTA derivatives at extracting Cu(2+), Zn(2+), Ni(2+), Pb(2+), Ca(2+), and Fe(3+) from a contaminated soil. At pH 7.0, PDTA extracted 1.5 times more Cu(2+) than did EDTA, but only 75% as much Ca(2+). Although CDTA was a strong chelator of heavy metal ions, its overall selectivity was lower and comparable to that of EDTA. BDTA was the least effective extractant because its stability constants with heavy metals were low. PDTA is potentially a practical washing agent for soils contaminated with trace metals.