Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Ecol Evol ; 14(1): e10853, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38259957

RESUMO

The invasion of alien plant species threatens the composition and diversity of native communities. However, the invasiveness of alien plants and the resilience of native communities are dependent on the interactions between biotic and abiotic factors, such as natural enemies and nutrient availability. In our study, we simulated the invasion of nine invasive plant species into native plant communities using two levels of nutrient availability and suppression of natural enemies. We evaluated the effect of biotic and abiotic factors on the response of alien target species and the resistance of native communities to invasion. The results showed that the presence of enemies (enemy release) increased the biomass proportion of alien plants while decreasing that of native communities in the absence of nutrient addition. Furthermore, we also found that the negative effect of enemy suppression on the evenness of the native community and the root-to-shoot ratio of alien target species was greatest under nutrient addition. Therefore, nutrient-poor and natural enemies might promote the invasive success of alien species in native communities, whereas nutrient addition and enemy suppression can better enhance the resistance of native plant communities to invasion.

2.
Front Plant Sci ; 14: 1275141, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38023893

RESUMO

Introduction: Climate change and mono-afforestation or mono-reforestation have continuously caused a decline in biodiversity and ecosystem services on forest plantations. Key plant functional traits in forests or plantations may affect ecosystem functions after forest management practices. Plant clonality, a key functional trait, frequently links to biodiversity and ecosystem functions and affects the biodiversity-ecosystem functioning relationship. However, little is known about how plant clonality affects ecosystem functions and services of plantations after forest management. Methods: We conducted a field experiment to discuss the diversity and proportion of clonal plants, plant diversity of the communities, and ecosystem service functions and their relationships under 10 years of close-to-nature (CTN) management, artificial gap management, and control (i.e., without management) in the three stages of C. Lanceolata plantations. Results: Our results showed that CTN and gap management modes significantly facilitated diversity of clonal plants, plant diversity of the communities, and parameters of ecosystem service functions in C. lanceolata plantations. Moreover, CTN management promoted plant community diversity, soil water conservation, and carbon storage the most in the earlier stand stages. Diversity of clonal plants was significantly positively correlated with ecosystem service functions after forest management. Structural equation modeling analysis indicated that forest gap or CTN management indirectly positively affected ecosystem service functions through increasing diversity of clonal woody plants and plant diversity of the communities. Conclusion: Our results indicate a highly positive effect of gap or CTN management on diversity and proportion of clonal plants and on plant diversity of the communities, which link to improvements in ecosystem service functions (i.e., water and soil conservation and carbon storage). The link between forest management, diversity, and ecosystem functions suggests that key functional traits or plant functional groups should be considered to underline the mechanism of traits-ecosystem functioning relationships and the restoration of degraded plantations.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa