Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34518234

RESUMO

Amyloid fibrillization is an exceedingly complex process in which incoming peptide chains bind to the fibril while concertedly folding. The coupling between folding and binding is not fully understood. We explore the molecular pathways of association of Aß40 monomers to fibril tips by combining time-resolved in situ scanning probe microscopy with molecular modeling. The comparison between experimental and simulation results shows that a complex supported by nonnative contacts is present in the equilibrium structure of the fibril tip and impedes fibril growth in a supersaturated solution. The unraveling of this frustrated state determines the rate of fibril growth. The kinetics of growth of freshly cut fibrils, in which the bulk fibril structure persists at the tip, complemented by molecular simulations, indicate that this frustrated complex comprises three or four monomers in nonnative conformations and likely is contained on the top of a single stack of peptide chains in the fibril structure. This pathway of fibril growth strongly deviates from the common view that the conformational transformation of each captured peptide chain is templated by the previously arrived peptide. The insights into the ensemble structure of the frustrated complex may guide the search for suppressors of Aß fibrillization. The uncovered dynamics of coupled structuring and assembly during fibril growth are more complex than during the folding of most globular proteins, as they involve the collective motions of several peptide chains that are not guided by a funneled energy landscape.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Amiloide/metabolismo , Fragmentos de Peptídeos/metabolismo , Cinética , Simulação de Dinâmica Molecular , Dobramento de Proteína
2.
J Biol Chem ; 298(12): 102662, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36334629

RESUMO

Fibrillization of the protein amyloid ß is assumed to trigger Alzheimer's pathology. Approaches that target amyloid plaques, however, have garnered limited clinical success, and their failures may relate to the scarce understanding of the impact of potential drugs on the intertwined stages of fibrillization. Here, we demonstrate that bexarotene, a T-cell lymphoma medication with known antiamyloid activity both in vitro and in vivo, suppresses amyloid fibrillization by promoting an alternative fibril structure. We employ time-resolved in situ atomic force microscopy to quantify the kinetics of growth of individual fibrils and supplement it with structure characterization by cryo-EM. We show that fibrils with structure engineered by the drug nucleate and grow substantially slower than "normal" fibrils; remarkably, growth remains stunted even in drug-free solutions. We find that the suppression of fibril growth by bexarotene is not because of the drug binding to the fibril tips or to the peptides in the solution. Kinetic analyses attribute the slow growth of drug-enforced fibril polymorph to the distinctive dynamics of peptide chain association to their tips. As an additional benefit, the bexarotene fibrils kill primary rat hippocampal neurons less efficiently than normal fibrils. In conclusion, the suggested drug-driven polymorph transformation presents a mode of action to irreversibly suppress toxic aggregates not only in Alzheimer's but also potentially in myriad diverse pathologies that originate with protein condensation.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Animais , Ratos , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/metabolismo , Bexaroteno/farmacologia , Amiloide/química , Placa Amiloide , Fragmentos de Peptídeos/química
3.
Int J Pharm ; 615: 121464, 2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35051537

RESUMO

Adeno-associated virus (AAV) has become an emerging tool for human gene therapies. Currently, AAV gene therapies are subjected to multiple freeze-thaw cycles during manufacturing, storage, transportation, and administration. While studies have shown that multiple freeze-thaw cycles led to a decrease in transduction efficiency, the AAV degradation mechanism during freeze-thaw is not well understood. Here, we have characterized the impact of freeze-thaw on AAV8 by employing a variety of assays, which revealed significant increases in the amount of free single-stranded DNA (ssDNA) in AAV8 formulations after multiple freeze-thaw cycles. Subsequent analysis using Next Generation Sequencing (NGS) revealed that the ssDNA primarily consisted of genome DNA, indicating that the increased ssDNA leaked out from AAV8. Experiments performed using different serotypes of AAV confirmed the pervasiveness of such behavior amongst AAVs. In addition, formulation screening studies were performed to understand the impact on genome DNA leakage from AAV. The formulation screening results showed that the addition of 10% sucrose and 0.1% poloxamer 188 to Dulbecco's phosphate-buffered saline (DPBS) reduced the leakage of ssDNA in AAV samples after freeze-thaw cycles compared to the base formulation of DPBS alone. These findings shed new light on the degradation mechanism of AAVs and stabilization of the AAV-based gene therapies.


Assuntos
Dependovirus , Terapia Genética , DNA , Dependovirus/genética , Congelamento , Humanos
4.
ACS Chem Neurosci ; 10(6): 2967-2976, 2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-31099555

RESUMO

Oligomers and fibrils of the amyloid-ß (Aß) peptide are implicated in the pathology of Alzheimer's disease. Here, we monitor the growth of individual Aß40 fibrils by time-resolved in situ atomic force microscopy and thereby directly measure fibril growth rates. The measured growth rates in a population of fibrils that includes both single protofilaments and bundles of filaments are independent of the fibril thickness, indicating that cooperation between adjacent protofilaments does not affect incorporation of monomers. The opposite ends of individual fibrils grow at similar rates. In contrast to the "stop-and-go" kinetics that has previously been observed for amyloid-forming peptides, growth and dissolution of the Aß40 fibrils are relatively steady for peptide concentration of 0-10 µM. The fibrils readily dissolve in quiescent peptide-free solutions at a rate that is consistent with the microscopic reversibility of growth and dissolution. Importantly, the bimolecular rate coefficient for the association of a monomer to the fibril end is significantly smaller than the diffusion limit, implying that the transition state for incorporation of a monomer into a fibril is associated with a relatively high free energy.


Assuntos
Peptídeos beta-Amiloides/química , Amiloide/química , Solubilidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa