Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Anal Chem ; 95(35): 13297-13304, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37610312

RESUMO

A 2D flow cytometry platform, known as CytoLM Plus, was developed for multi-parameter single-cell analysis. Single particles or cells after hydrodynamic alignment in a microfluidic unit undergo first-dimension fluorescence and side scattering dual-channel optical detection. They were thereafter immediately directed to ICP-MS by connecting the microfluidic unit with a high-efficiency nebulizer to facilitate the second-dimension ICP-MS detection. Flow cytometry measurements of fluorescent microspheres evaluated the performance of CytoLM Plus for optical detection. 6434 fluorescence bursts were observed with a valid signal proportion as high as 99.7%. After signal unification and gating analysis, 6067 sets of single-particle signals were obtained with 6.6 and 6.2% deviations for fluorescence burst area and height, respectively. This is fairly comparable with that achieved by a commercial flow cytometer. Afterward, CytoLM Plus was evaluated by 2D flow cytometry measurement of Ag+-incubated and AO-stained MCF-7 cells. A program for 2D single-cell signal unification was developed based on the algorithm of screening in lag time window. In the present case, a lag time window of -4.2 ± 0.09 s was determined by cross-correlation analysis and two-parameter optimization, which efficiently unified the concurrent single-cell signals from fluorescence, side scattering, and ICP-MS. A total of 495 sets of concurrent 2D signals were screened out, and the statistical analysis of these single-cell signals ensured 2D multi-parameter single-cell analysis and data elucidation.


Assuntos
Algoritmos , Projetos de Pesquisa , Humanos , Corantes , Citometria de Fluxo , Análise de Célula Única
2.
Anal Chem ; 93(23): 8203-8209, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34077198

RESUMO

A two-dimensional cytometry platform (CytoLM) with high sensitivity and high temporal resolution is developed for single-particle and single-cell sampling and analysis. First, a Dean flow-assisted vortex capillary cell sampling (VCCS) unit confines the sample stream in curved flow and drives to focus and align the particles or cells in a small probe volume. By coupling VCCS to a laser-induced fluorescence (LIF) detector with data acquisition and processing capability, a high-throughput single-particle/cell analysis system (VCCS-LIF) was established. The particle analysis throughput of 119.42/s and a detection recovery of 78.20 ± 1.75% were achieved at a density of 9.16 × 104/mL for fluorescent particles, and the cell analysis throughput is 48.20/s at a density of 1.5 × 105/mL. Second, the CytoLM platform is constructed by hyphenating VCCS-LIF with inductively coupled plasma mass spectrometry (ICP-MS). In the analysis of HepG2 cells by Ag+ incubation and AO staining, 10,760 fluorescence bursts and 3068 MS events were observed in 240 s. Invalid signals due to undispersed cells were controlled at 3.80% for LIF and 1.01% for MS, with a proportion of effective signal of >96.20%. After peak identification and integral processing of the original data, the statistical results including peak area, height, width, and spacing are obtained concurrently and the information on concentration and elemental quantification of single cells is evaluated. CytoLM facilitates high-throughput, multi-dimensional, and multi-parameter characterization of particles and cells, and it may provide vast potential in life science analysis.


Assuntos
Imagem Individual de Molécula , Análise de Célula Única , Lasers , Espectrometria de Massas , Análise Espectral
3.
Anal Chem ; 92(9): 6604-6612, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32233376

RESUMO

Single-cell analysis facilitates perception into the most essential processes in life's mysteries. While it is highly challenging to quantify them at the single-cell level, where precise single-cell sampling is the prerequisite. Herein, a real-time single-cell quantitative platform was established for high-throughput droplet-free single-cell sampling into time-resolved (TRA) ICP-MS and real-time quantification of intracellular target elements. The concentrated cells (2 × 106 cells mL-1) were spontaneously and orderly aligned in a spiral microchannel with 104 periodic dimensional confined micropillars. The quantification is conducted simultaneously by internal standard inducing from another branch channel in the chip. The flow-rate-independent feature of single-cell focusing into an aligned stream within a wide range of fluidic velocities (100-800 µL min-1) facilitates high-throughput, oil-free, single-cell introduction into TRA-ICP-MS. The system was used for real-time exploration of intracellular antagonism of Cu2+ against Cd2+. an obvious antagonistic effect was observed for the MCF-7 cell by culturing for 3, 6, 9, and 12 h with 100 µg L-1 Cd2+ and 100 µg L-1 Cu2+, and a rivalry rate of 12.8% was achieved at 12 h. At identical experimental conditions, however, limited antagonistic effect was encountered for a bEnd3 cell within the same incubation time period, with a rivalry rate of 4.81%. On the contrary, an antagonistic effect was not observed for the HepG2 cell by culturing for 6 h, while an obvious antagonistic effect was found by further culturing to 12 h, with a rivalry rate of 10.43%. For all three cell lines, significant heterogeneity was observed among individual cells.


Assuntos
Ensaios de Triagem em Larga Escala , Análise de Célula Única , Cádmio/química , Cobre/química , Humanos , Espectrometria de Massas , Tamanho da Partícula , Propriedades de Superfície , Fatores de Tempo , Células Tumorais Cultivadas
4.
Anal Bioanal Chem ; 412(3): 647-655, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31836924

RESUMO

In this work, simple, rapid, and low-cost multiplexed detection of tumor-related micro-RNAs (miRNAs) was achieved based on multi-color fluorescence on a microfluidic droplet chip, which simplified the complexity of light path to a half. A four-T-junction structure was fabricated to form uniform nano-volume droplet arrays with customized contents. Multi-color quantum dots (QDs) used as the fluorescence labels were encapsulated into droplets to develop the multi-path fluorescence detection module. We designed an integrated multiplex fluorescence resonance energy transfer system assisted by multiple QDs (four colors) and one quencher to detect four tumor-related miRNAs (miRNA-20a, miRNA-21, miRNA-155, and miRNA-221). The qualitative analysis of miRNAs was realized by the color identification of QDs, while the quantitative detection of miRNAs was achieved based on the linear relationship between the quenching efficiency of QDs and the concentration of miRNAs. The practicability of the multiplex detection device was further confirmed by detecting four tumor-related miRNAs in real human serum samples. The detection limits of four miRNAs ranged from 35 to 39 pmol/L was achieved without any target amplification. And the linear range was from 0.1 nmol/L to 1 µmol/L using 10 nL detection volume (one droplet) under the detection speed of 320 droplets per minute. The multiple detection system for miRNAs is simple, fast, and low-cost and will be a powerful platform for clinical diagnostic analysis. Graphical abstract.


Assuntos
Colorimetria/métodos , MicroRNAs/metabolismo , Microfluídica , Fluorescência , Humanos , Limite de Detecção
5.
Mikrochim Acta ; 187(3): 194, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-32124079

RESUMO

A controllable approach for preparing a portable colloidal photonic crystal (CPC) array chip is presented. The approach was inspired by the confinement effect of nanoparticle self-assembly on patterned surface. Hydrophobic polydimethylsiloxane substrate with reproducible micro-region array was fabricated by soft-lithography. The substrate was employed as the patterned template for self-assembly of monodisperse polystyrene nanoparticles. The CPC units can be prepared in several minutes, and exhibit consistent reflection wavelength. By adjusting the size of polystyrene nanoparticles and the shape of micro-regions, CPC units with multiple structure, colors and geometries were obtained. The CPC array chip features fluorescence enhancement owing to the optical modulation capability of the periodic nanostructure of the self-assembled CPC. With the reflection wavelength (523 nm) of green CPC units overlapping the emission wavelength (520 nm, with excitation wavelength of 490 nm) of 6-carboxyfluorescein-labeled DNA probe, the fluorescence intensity increased more than 10-fold. For signal-amplified assay of adenosine, the concentration range of linear response was 5.0 × 10-5 mol L-1 to 1.0 × 10-3 mol L-1, and the limit of detection was 1.3 × 10-6 mol L-1. Because of the enhancement effect of photonic crystal, the fluorescence images were more readable from the CPC array chip, compared with those from the planar substrate. The chip has potential applications in multiplex determination with high-throughput via encoding strategy based on the tunable structure, color or geometric shape. Graphical abstractSchematic diagram of signal-enhanced fluorescent detection of adenosine based on the colloidal photonic crystal array chip (PDMS, polydimethylsiloxane; PS NPs, polystyrene nanoparticles; CPC, colloidal photonic crystal; GO, graphene oxide; FAM, 6-carboxyfluorescein).


Assuntos
Adenosina/análise , Técnicas Biossensoriais/métodos , Fluoresceínas/química , Corantes Fluorescentes/química , Dispositivos Lab-On-A-Chip , Coloides , Cristalização , Sondas de DNA/química , Dimetilpolisiloxanos/química , Interações Hidrofóbicas e Hidrofílicas , Limite de Detecção , Fótons , Espectrometria de Fluorescência , Propriedades de Superfície
6.
Anal Chem ; 91(24): 15826-15832, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31724393

RESUMO

ICP-MS is powerful in evaluating elemental species at the single-cell level, where high throughput/efficiency/precision are the keys for achieving statistically significant information based on massive data. We report an ultrahigh-throughput single-cell sampling system, consisting of a 3D spiral-helix tubing array to facilitate single-cell focusing into an orderly flow by inertial lift force and Dean drag force. The spiral-helix array ensures a superb single-cell sampling rate of 40 000 cells min-1 at a favorable temporal-spatial resolution of 41.55 ± 17.46 µm (distance between adjacent cells) or 0.97 ± 0.41 ms (time interval between adjacent cells). With a laboratory-made nebulization device, a cell measurement efficiency up to 42.1 ± 7.2% is achieved in ICP-MS assay. Analysis of Au nanoparticles (AuNPs) in living K562 cells after incubation illustrates obvious diversification of AuNPs among cells. The ultrahigh throughput and cell measurement efficiency generate massive data on single-cell assay, make statistical analysis more comprehensive, and enable interpreting extremely subtle differences among individual cells.


Assuntos
Corantes Fluorescentes/química , Análise de Célula Única/métodos , Ouro/química , Humanos , Células K562 , Espectrometria de Massas , Nanopartículas Metálicas/química , Técnicas Analíticas Microfluídicas , Análise de Célula Única/instrumentação
7.
Anal Chem ; 90(24): 14543-14550, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30480435

RESUMO

In single-cell analysis with ICP-MS it is highly important to ensure precise single-cell sampling into ICP. For this purpose, a simple configured pressure-resistant MicroCross interface is developed for high-throughput/high-precision microdroplet generation and single-cell encapsulation. Aqueous cell suspension is ejected and sheared into droplets by tangent-flowing hexanol-continuous phases in the flow-focusing geometry of MicroCross, wherein to precisely trap a single cell into a droplet, with an extremely low probability of <0.005% for a single droplet encapsulating two cells. MicroCross interface is coupled with time-resolved ICP-MS (TRA-ICP-MS) for quantifying nanoparticles in single MCF-7 cells. At the optimal conditions, sufficient temporal-spatial resolution of the microdroplets is achieved facilitating high-throughput sampling of single cells into ICP. For solving the serious carbon deposition on the sampling cone and the unstable plasma torch caused by incomplete oxidation of hexanol phase in ICP, dimethyl carbonate (DMC) is for the first time used as a superb oxygen compensation reagent, which ensures adequate oxidation of hexanol, effectively eliminates the carbon deposition, and maintains a stable plasma. The single-cell analysis results indicated a remarkable discrepancy of the number of nanoparticles among the individual cells, falling into a range of 130-584 per MCF-7 cell in the case of AuNPs.


Assuntos
Espectrometria de Massas/métodos , Nanopartículas/química , Análise de Célula Única/métodos , Carbono/química , Formiatos/química , Ouro/química , Hexanóis/química , Humanos , Células MCF-7 , Nanopartículas Metálicas/química , Oxirredução
8.
J Sep Sci ; 40(8): 1765-1772, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28220659

RESUMO

A three-dimensional reduced graphene oxide aerogel with embedded nickel oxide nanoparticles was prepared by a one-step self-assembly reaction in a short time. The nanoparticles could be captured into the interior of reduced graphene oxide network during the formation of the three-dimensional architecture. The composite exhibited porosity, good biocompatibility, and abundant metal affinity binding sites. The aerogel was used to isolate ovalbumin selectively from egg white, and favorable adsorption was achieved at pH 3. An adsorption efficiency of 90.6% was obtained by using 1 mg of the composite for adsorbing 70 µg/mL of ovalbumin in 1.0 mL of sample solution, and afterwards a recovery of 90.7% was achieved by using an eluent of 1.0 mL Britton-Robinson buffer solution at pH 5. After the adsorption/desorption, ovalbumin showed no change in the conformation. The adsorption behavior of ovalbumin on the reduced graphene oxide composite well fitted to the Langmuir adsorption model, and a corresponding theoretical maximum adsorption capacity was 1695.2 mg/g. A sodium dodecyl sulfate polyacrylamide gel electrophoresis assay demonstrated that the aerogel could selectively isolate ovalbumin from chicken egg white.


Assuntos
Grafite , Nanopartículas Metálicas , Níquel , Ovalbumina/química , Animais , Galinhas , Óvulo/química , Óxidos
9.
Talanta ; 275: 126191, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38705020

RESUMO

Mucin 1 is a significant tumor marker, and developing portable and cost-effective methods for its detection is crucial, especially in resource-limited areas. Herein, we developed an innovative approach for mucin 1 detection using a visible multicolor aptasensor. Urease-encapsulated DNA microspheres were used to mediate multicolor change facilitated by the color mixing of the mixed pH indicator, a mixed methyl red and bromocresol green solution. Distinct color changes were exhibited in response to varying mucin 1 concentrations. Notably, the color mixing of the mixed pH indicator was used to display various hues of colors, broadening the range of color variation. And color tonality is much easier to differentiate than color intensity, improving the resolution with naked-eyes. Besides, the variation of color from red to green (a pair of complementary colors) enhanced the color contrast, heightening sensitivity for visual detection. Importantly, the proposed method was successfully applied to detect mucin 1 in real samples, demonstrating a clear differentiation of colors between the samples of healthy individuals and breast cancer patients. The use of a mixed pH indicator as a multichromatic substrate offers the merits of low cost, fast response to pH variation, and plentiful color-evolution. And the incorporation of calcium carbonate microspheres to encapsulate urease ensures stable urease activity and avoids the need for extra urease decoration. The color-mixing dependent strategy opens a new way for multicolor detection of MUC1, characterized by vivid color changes.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Cor , Mucina-1 , Urease , Urease/química , Concentração de Íons de Hidrogênio , Mucina-1/análise , Mucina-1/química , Humanos , Técnicas Biossensoriais/métodos , Aptâmeros de Nucleotídeos/química , Microesferas , Neoplasias da Mama
10.
Biomicrofluidics ; 18(2): 021301, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38566823

RESUMO

Fluid manipulation is an important foundation of microfluidic technology. Various methods and devices have been developed for fluid control, such as electrowetting-on-dielectric-based digital microfluidic platforms, microfluidic pumps, and pneumatic valves. These devices enable precise manipulation of small volumes of fluids. However, their complexity and high cost limit the commercialization and widespread adoption of microfluidic technology. Shape memory polymers as smart materials can adjust their shape in response to external stimuli. By integrating shape memory polymers into microfluidic chips, new possibilities for expanding the application areas of microfluidic technology emerge. These shape memory polymers can serve as actuators or regulators to drive or control fluid flow in microfluidic systems, offering innovative approaches for fluid manipulation. Due to their unique properties, shape memory polymers provide a new solution for the construction of intelligent and automated microfluidic systems. Shape memory microfluidic chips are expected to be one of the future directions in the development of microfluidic technology. This article offers a summary of recent research achievements in the field of shape memory microfluidic chips for fluid and droplet manipulation and provides insights into the future development direction of shape memory microfluidic devices.

11.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124352, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38678841

RESUMO

Mucin 1 is an essential tumor biomarker, and developing cost-effective and portable methods for mucin 1 detection is crucial in resource-limited settings. Herein, the pH-regulated dual-enzyme mimic activities of manganese dioxide nanosheets were demonstrated, which were integrated into an aptasensor for dual-mode detection of mucin 1. Under acidic conditions, manganese dioxide nanosheets with oxidase mimic activities catalyzed the oxidation of 3,3',5,5'-tetramethylbenzidine sulfate, producing visible multicolor signals; while under basic conditions, manganese dioxide nanosheets with catalase mimic activities were used as catalyst for the decomposition of hydrogen peroxide, generating gas pressure signals. The proposed method allows the naked eye detection of mucin 1 through multicolor signal readout and the quantitative detection of mucin 1 with a handheld pressure meter or a UV-vis spectrophotometer. The study demonstrates that manganese dioxide nanosheets with pH-regulated dual-enzyme mimic activities can facilitate multidimensional transducing signals. The use of manganese dioxide nanosheets for the transduction of different signals avoids extra labels and simplifies the operation procedures. Besides, the signal readout mode can be selected according to the available detection instruments. Therefore, the use of manganese dioxide nanosheets with pH-regulated dual-enzyme mimic activities for dual-signal readout provides a new way for mucin 1 detection.


Assuntos
Compostos de Manganês , Mucina-1 , Nanoestruturas , Óxidos , Compostos de Manganês/química , Concentração de Íons de Hidrogênio , Mucina-1/análise , Óxidos/química , Nanoestruturas/química , Humanos , Colorimetria/métodos , Benzidinas/química , Pressão , Técnicas Biossensoriais/métodos , Peróxido de Hidrogênio/análise , Peróxido de Hidrogênio/química , Aptâmeros de Nucleotídeos/química
12.
J Colloid Interface Sci ; 641: 568-576, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36963250

RESUMO

Alkaline phosphatase (ALP), as a crucial enzyme involved in many physiological activities, is always used as one of the significant biomarkers in clinical diagnosis. Herein, a novel, simple, and effective photothermal quantitative method based on the etching of MnO2-coated gold nanoparticles (Au@MnO2 NPs) was established for ALP activity assay with a household thermometer-based visual readout. The photothermal effect of Au@MnO2 NPs is much higher than that of MnO2 NPs or Au NPs. The MnO2 shell of Au@MnO2 NPs can be etched by ascorbic acid, a product of ALP-catalyzed hydrolysis of 2-phospho-l-ascorbic acid. With the etching of Au@MnO2 NPs, the photothermal conversion efficiency decreased gradually, causing the decrease of the temperature increment of the solutions by degrees. A household thermometer, instead of large-scale and professional instruments, was used as a signal reader to realize the visual quantitative detection. The photothermal platform was used successfully for the determination of ALP with a wide linear range from 2.0 to 50 U/L and a detection limit as low as 0.75 U/L. Moreover, the inhibition efficiency of sodium vanadate for ALP activity was investigated, proving the photothermal quantitative method will be a potential platform for screening enzyme inhibitors. Such a sensitive, facile, and low-cost sensing assay provides a new prospect to develop platforms for point-of-care testing.


Assuntos
Fosfatase Alcalina , Nanopartículas Metálicas , Ouro , Compostos de Manganês , Óxidos
13.
Talanta ; 253: 123900, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36095940

RESUMO

Research on ion channels and their monoclonal antibodies plays a critical role in drug development and disease diagnosis. The current ion channel researches are often not conducted in the microenvironment for cells survival, which restricts the mechanism study of the links between the cell structure and the ion channel function. In this work, we synthesized gold core-4-mercaptobenzonitrile-sliver shell-goat anti-rabbit immunoglobulin G (Au@4-MBN@Ag@IgG) nanoparticles as surface-enhanced Raman scattering (SERS) nanoprobes for investigating the human ether-a-go-go related gene (hERG) potassium ion channel in cell membranes. This is the first attempt to study ion channels using SERS. Due to the unique core-molecule-shell structure and the silver shell of nanoprobes, strong and stable SERS signal was obtained. With the help of antibodies, the Au@4-MBN@Ag@IgG nanoprobes were captured by hERG antibodies and then bonded with hERG ion channels based on the sandwich immune response. The reporter molecule, 4-MBN, displayed a strong and sharp characteristic peak at 2233 cm-1 in the Raman silent region. The intensity of this peak denoted the concentration of antibodies and the expression of ion channel proteins. We successfully applied this amplification-free method for in-situ imaging the distribution of the hERG ion channel on the transfected HEK293 cell surface at the single-cell level. This hERG ion channel profiling strategy promises a maneuverable tool for ion channel research.


Assuntos
Imunoglobulina G , Canais Iônicos , Humanos , Células HEK293 , Nanopartículas Metálicas
14.
Lab Chip ; 23(8): 2068-2074, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36928455

RESUMO

Open microfluidics has attracted increasing attention over the last decade because of its flexibility and simplicity with respect to cell culture and clinical diagnosis. However, traditional valves and pumps are difficult to integrate on open-channel microfluidic chips, in which a liquid is usually driven by capillary forces. Poor fluid control performance is a common drawback of open microfluidics. Herein, we proposed a method for controlling the liquid flow in open channels by controlling the continuous Laplace pressure induced by the deformation of the shape memory microstructures. The uniformly arranged cuboidal microcolumns in the open channels have magnetic/light dual responses, and the bending angle of the microcolumns can be controlled by adjusting Laplace pressure using near-infrared laser irradiation in a magnetic field. Laplace pressure and capillary force drove the liquid flow together, and the controllable fluid transport was realized by adjusting the hydrophilicity of the channel surface and the bending angle of the microcolumns. We demonstrated the controllability of the flow rate and the directional transport of water along a preset path. In addition, the start and stop of water transport were realized via local hydrophobic modification. The proposed strategy improves poor fluid control in traditional open systems and makes fluid flow highly controllable. We tried to extract and detect rhodamine B in tiny droplets on the open microfluidic chip, demonstrating the advantages of the proposed strategy in the separation and analysis of tiny samples.

15.
Talanta ; 258: 124424, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36905790

RESUMO

Flow cytometry is among the most powerful tools for single-cell analysis, while the high cost and mechanical complexity of the commercial instrumentation limit the applications in personalized single-cell analysis. For this issue, we hereby construct an open and low-cost flow cytometer. It is highly compact to integrate the functions of (1) single cell aligning by a lab-made modularized 3D hydrodynamic focusing device, and (2) fluorescence detection of the single cells by a confocal laser-induced fluorescence (LIF) detector. The ceiling cost of the entire hardware for the LIF detection unit and 3D focusing device is $ 3200 and $ 400 respectively. A sheath flow velocity of 150 µL/min produces a focused sample stream of 17.6 µm × 14.6 µm at sample flow of 2 µL/min, based on the LIF response frequency and the laser beam spot diameter. The assay performance of the flow cytometer was evaluated by characterizing fluorescent microparticles and acridine orange (AO) stained HepG2 cells, producing throughputs of 40.5/s and 6.2/s respectively. Favorable assay precision and accuracy were demonstrated by the agreement of frequency histogram with imaging analysis, and good Gaussian-like distributions of fluorescent microparticles and AO-stained HepG2 cells. Practically, the flow cytometer was successfully applied for the evaluation of ROS generation in single HepG2 cells.


Assuntos
Corantes , Hidrodinâmica , Citometria de Fluxo/métodos , Laranja de Acridina , Lasers
16.
Colloids Surf B Biointerfaces ; 215: 112490, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35405536

RESUMO

Theranostic nanoplatforms with accurate diagnosis and effective therapy show a bright prospect for tumor treatments. Herein, a novel boracic acid-modified graphite carbon nitride and Prussian blue nanohybrid (PB@B-g-C3N4) was developed, which provides sialic acid-targeted Raman recognition and synergistic photothermal/photodynamic therapy in the near-infrared region. Owing to the specific interaction between boracic acid and sialic acid and Raman response at 2157 cm-1 of PB, the nanohybrids exhibit high specificity and Raman sensitivity for detection of the overexpressed sialic acid on tumor cells. Moreover, the photothermal conversion efficiency of PB@B-g-C3N4 is as high as 47.0% with 808 nm laser irradiation due to the enhanced absorbance of PB@B-g-C3N4. PB@B-g-C3N4 also possesses excellent photodynamic activity, which is attributed to the energy transfer of PB (type I) and electron transfer between PB and B-g-C3N4 (type II). This nanotheranostic agent for Raman recognition of cancer markers and synergistic photothermal/photodynamic therapy holds great potential for the development of efficient theranostic nanoplatforms.


Assuntos
Neoplasias , Fotoquimioterapia , Ferrocianetos , Humanos , Ácido N-Acetilneuramínico , Neoplasias/terapia , Fototerapia/métodos
17.
Anal Chim Acta ; 1189: 339224, 2022 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-34815036

RESUMO

Psoralen ultraviolet A (PUVA) therapy has thrived as a promising treatment for psoriasis. However, overdose of PUVA treatment will cause side-effects, such as melanoma formation. And these side-effects are often ignored during PUVA therapy. Hence, in situ monitoring therapeutic response of PUVA therapy is important to minimize side-effects. Aberrant expression of tyrosinase (TYR) has been proved to be associated with melanoma, indicating that TYR is a potential target for evaluation of PUVA therapy. Herein, we reported a strategy for in situ monitoring TYR activity during PUVA therapy by using a cell-array chip-based SERS platform. The cell-array chip was used to simulate cell survival environment for cell culture. Capture of single cells and living cell analysis were realized in the isolated microchambers. An enzyme-induced core-shell self-assembly substrate was used to evaluate TYR activity in living cells during PUVA therapy. The gold nanoparticle modified with a SERS reporter, 4-mercaptobenzonitrile (4-MBN), was used as the core. In the presence of oxygen and TYR, hydroxylation of l-tyrosine occurred, leading to the reduction of silver ion on the surface of gold cores. The growth of silver shells was accompanied by the increased SERS intensity of the reporter, which is related directly to TYR activity. The detection limit for TYR activity is 0.45 U/mL. Upregulation of TYR activity was successfully monitored after PUVA therapy. Notably, real-time and in situ information of therapeutic response can be obtained through monitoring PUVA therapy by using a cell-array chip-based SERS platform, which has great potential to guide the clinical application of PUVA therapy.


Assuntos
Ouro , Nanopartículas Metálicas , Terapia PUVA , Animais , Linhagem Celular , Camundongos , Prata , Análise Espectral Raman
18.
Anal Chim Acta ; 1226: 340268, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36068064

RESUMO

The cellular metabolism of metals is highly critical to elucidate their potential cytotoxicity or cell protection mechanism. In this work, an asymmetric serpentine microfluidic device (ASMD) with high sampling efficiency and excellent focusing performance was developed for single-cell focusing. ASMD coupling with ICP-MS ensures single-cell assay to provide the information for trivalent arsenic (As(III)) uptake by HepG2 cells, which reveals the heterogeneity of cellular arsenic distribution, and elucidates the arsenic elimination behaviors in single HepG2 cells. Further, the metabolism and transformation of As(III) in HepG2 cells was tracked by hyphenating capillary electrophoresis (CE) separation with ICP-MS. The results for single-cell analysis and arsenic elimination kinetics illustrated that the half-life of arsenic elimination is 0.9 ± 0.04 h with the elimination constant of 0.77 ± 0.03, i.e., 77% of accumulated As in HepG2 cells may be eliminated per hour. Moreover, arsenobetaine (AsB) was identified to be the main metabolite and biotransformation species of As in HepG2 cells. ASMD-ICP-MS and CE-ICP-MS are powerful for tracking the fate of metals or metal drugs in single cells to comprehensively understand their metabolic pathway and transformation behaviors.


Assuntos
Arsênio , Arsênio/análise , Arsênio/toxicidade , Eletroforese Capilar/métodos , Células Hep G2 , Humanos , Espectrometria de Massas/métodos , Análise Espectral
19.
Colloids Surf B Biointerfaces ; 197: 111437, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33166930

RESUMO

Chemodynamic therapy (CDT), inducing tumor cell apoptosis through Fenton reaction to produce hydroxyl radical (·OH), is an emerging cancer treatment technology. Highly efficient Fenton catalytic reactions usually take place at a low pH environment. Utilizing graphitic carbon nitride supported hemin and Au nanoparticles (g-C3N4/hemin/Au) as a novel biomimetic nanocatalyst, we achieve an enhanced CDT for inducing tumor cell apoptosis in the presence of excess H2O2, and reveal the molecular events during the CDT-induced apoptosis. The prepared g-C3N4/hemin/Au nanohybrids exhibit excellent Fenton catalytic activity for the generation of highly toxic ·OH at weak acidic and neutral condition, which breaks through the limitation of traditional acidity-dependent response. The Fenton catalytic mechanism was also studied. The Fenton efficiency is primarily enhanced by the high affinity between nanohybrids and H2O2, and the transformation of Fe(III) to Fe(IV)=O without the formation of iron hydrate precipitation. Moreover, the intracellular molecular events during the CDT process were monitored. Phenylalanine metabolism was perturbed with protein degradation and DNA structures were damaged, which eventually lead to cell apoptosis. This study provides a significant guidance for the further development of more effective CDT platforms.


Assuntos
Hemina , Nanopartículas Metálicas , Apoptose , Compostos Férricos , Ouro , Peróxido de Hidrogênio , Concentração de Íons de Hidrogênio
20.
Lab Chip ; 21(6): 1131-1138, 2021 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-33533387

RESUMO

In this work, we developed a digital microfluidic platform based on a shape memory micropillar array responsive to near-infrared light, and the droplets were programmatically manipulated through light-induced micropillar deformation. The micropillar array was constructed on the surface of a poly(ethylene-vinyl acetate) copolymer, a shape memory polymer sensitive to near-infrared light. Before droplet manipulation, the micropillar array was kept temporarily tilted by heating and pressing. Under the irradiation of a near-infrared laser, the micropillar array achieved the transition from the temporary shape to the original shape. Temperature gradient and micropillar deformation caused by near-infrared light irradiation produce the driving force for droplet movement. The movement of the laser mounted on an electronically controlled displacement platform was controlled by a computer to achieve the programmed control of the droplets. Moreover, we demonstrated light-manipulated droplet movement and fusion, and achieved ascorbic acid detection using this digital microfluidic platform. In particular, the micropillar array chip is able to manipulate droplets in a wide range of 0.1 µL to 10 µL. The proposed digital microfluidic platform will broaden the application of digital microfluidic technology in analytical chemistry and biomedicine.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa