Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 28(1): 360-368, 2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-32118964

RESUMO

The storage and retrieval efficiency (SRE) and lifetime of optical quantum memories are two key performance indicators for scaling up quantum information processing. Here, we experimentally demonstrate a cavity-enhanced long-lived optical memory for two polarizations in a cold atomic ensemble. Using electromagnetically induced-transparency (EIT) dynamics, we demonstrate the storages of left-circularly and right-circularly polarized signal light pulses in the atoms, respectively. By making the signal and control beams collinearly pass through the atoms and storing the two polarizations of the signal light as two magnetic-field-insensitive spin waves, we achieve a long-lived (3.5 ms) memory. By placing a low-finesse optical ring cavity around the cold atoms, the coupling between the signal light and the atoms is enhanced, which leads to an increase in SRE. The presented cavity-enhanced storage shows that the SRE is ∼30%, corresponding to an intrinsic SRE of ∼45%.

2.
Opt Express ; 27(20): 27409-27419, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31684508

RESUMO

In this paper, we report a generation of a spin-wave excitation (SWE) with a near-unity (0.996±0.003) probability in a given time (~730 µ s). Such deterministic generation relies on a feedback scheme with a millisecond quantum memory. The millisecond memory is achieved by maximizing the wavelength of the spin wave and storing the SWE as the magnetic-field-insensitive transition. We then demonstrate partial retrievals of the spin wave by applying a first read pulse whose area is smaller than the value of π. The remained SWE is fully retrieved by a second pulse. Anti-correlation function between the detections in the first and second readouts has been measured, which shows that the partial-retrieval operation on the SWE is in the quantum regime. The presented experiment represents an important step towards the realization of the improved DLCZ quantum repeater protocol proposed in Phys. Rev. A 77, 062301 (2008).

3.
Opt Express ; 26(16): 20160-20173, 2018 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-30119330

RESUMO

The enhanced-generation of entanglement between one atomic collective excitation and a single photon (atom-photon) is very important for practical quantum repeaters and quantum networks based on atomic ensembles and linear optics. We present a feedback-loop algorithm based on field programmable gate array (FPGA) to obtain 21.6-fold increase of the generation rate of atom-photon entanglement at the storage time of 51 µs comparing with no feedback protocol. The generation rate of the atom-photon entanglement is ~3190/s (2100/s) for the excitation probability of 1.65% at the storage time of 1 µs (51 µs). The Bell parameter and the fidelity of atom-photon entanglement at the storage time of 1 µs are 2.40 ± 0.02 and 85.5% ± 0.6%, respectively. The detailed FPGA-based feedback-loop algorithm can be flexibly extended to the multiplexing of atom-photon entanglement, which is expected to further increase the generation rate of atom-photon entanglement.

4.
Phys Rev Lett ; 119(13): 130505, 2017 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-29341712

RESUMO

The light-matter quantum interface that can create quantum correlations or entanglement between a photon and one atomic collective excitation is a fundamental building block for a quantum repeater. The intrinsic limit is that the probability of preparing such nonclassical atom-photon correlations has to be kept low in order to suppress multiexcitation. To enhance this probability without introducing multiexcitation errors, a promising scheme is to apply multimode memories to the interface. Significant progress has been made in temporal, spectral, and spatial multiplexing memories, but the enhanced probability for generating the entangled atom-photon pair has not been experimentally realized. Here, by using six spin-wave-photon entanglement sources, a switching network, and feedforward control, we build a multiplexed light-matter interface and then demonstrate a ∼sixfold (∼fourfold) probability increase in generating entangled atom-photon (photon-photon) pairs. The measured compositive Bell parameter for the multiplexed interface is 2.49±0.03 combined with a memory lifetime of up to ∼51 µs.

5.
Opt Express ; 22(19): 23360-71, 2014 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-25321805

RESUMO

We report an experimental demonstration of storage of photonic polarization qubit (PPQ) protected by dynamical decoupling (DD). PPQ's states are stored as a superposition of two spin waves by electromagnetically-induced-transparency (EIT). Carr-Purcell-Meiboom-Gill (CPMG) DD sequences are applied to the spin-wave superposition to suppress its decoherence. Thus, the quantum process fidelity remains better than 0.8 for up to 800 µs storage time, which is 3.4-times longer than the corresponding storage time of ~180 µs without the CPMG sequences. This work is a key step towards the storage of single-photon polarization qubit protected by the CPMG sequences.


Assuntos
Óptica e Fotônica , Fótons , Teoria Quântica , Isótopos
6.
Phys Rev Lett ; 111(24): 240503, 2013 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-24483636

RESUMO

Long-lived and high-fidelity memory for a photonic polarization qubit (PPQ) is crucial for constructing quantum networks. We present a millisecond storage system based on electromagnetically induced transparency, in which a moderate magnetic field is applied on a cold-atom cloud to lift Zeeman degeneracy and, thus, the PPQ states are stored as two magnetic-field-insensitive spin waves. Especially, the influence of magnetic-field-sensitive spin waves on the storage performances is almost totally avoided. The measured average fidelities of the polarization states are 98.6% at 200 µs and 78.4% at 4.5 ms, respectively.

7.
Sci Rep ; 6: 33959, 2016 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-27667262

RESUMO

We report an experiment in which long-lived quantum memories for photonic polarization qubits (PPQs) are controllably released into any one of multiple spatially-separate channels. The PPQs are implemented with an arbitrarily-polarized coherent signal light pulses at the single-photon level and are stored in cold atoms by means of electromagnetic-induced-transparency scheme. Reading laser pulses propagating along the direction at a small angle relative to quantum axis are applied to release the stored PPQs into an output channel. By changing the propagating directions of the read laser beam, we controllably release the retrieved PPQs into 7 different photonic output channels, respectively. At a storage time of δt = 5 µs, the least quantum-process fidelity in 7 different output channels is ~89%. At one of the output channels, the measured maximum quantum-process fidelity for the PPQs is 94.2% at storage time of δt = 0.85 ms. At storage time of 6 ms, the quantum-process fidelity is still beyond the bound of 78% to violate the Bell's inequality. The demonstrated controllable release of the stored PPQs may extend the capabilities of the quantum information storage technique.

8.
Bioresour Technol ; 101(9): 3040-6, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20060712

RESUMO

The effect of temperature on the equilibrium adsorption of methylene blue dye from aqueous solution using carbon nanotubes was investigated. The equilibrium adsorption data were analyzed using two widely applied isotherms: Langmuir and Freundlich. The results revealed that Langmuir isotherm fit the experimental results well. Kinetic analyses were conducted using pseudo-first and second-order models and the intraparticle diffusion model. The regression results showed that the adsorption kinetics were more accurately represented by pseudo-second-order model. The activation energy of system (Ea) was calculated as 18.54 kJ/mol. Standard free energy changes (DeltaG(0)), standard enthalpy change (DeltaH(0)), and standard entropy change (DeltaS(0)) were calculated using adsorption equilibrium constants obtained from the Langmuir isotherm at different temperatures. All DeltaG(0) values were negative; the DeltaH(0) values and DeltaS(0) values of CNTs were 7.29 kJ/mol and 64.6 J/mol K, respectively. Results suggested that the methylene blue adsorption on CNTs was a spontaneous and endothermic process.


Assuntos
Azul de Metileno/química , Nanotubos de Carbono/química , Adsorção , Cinética , Modelos Químicos , Análise de Regressão , Temperatura
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa