Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(7): e2314747121, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38315853

RESUMO

Macrophages are integral components of the innate immune system, playing a dual role in host defense during infection and pathophysiological states. Macrophages contribute to immune responses and aid in combatting various infections, yet their production of abundant proinflammatory cytokines can lead to uncontrolled inflammation and worsened tissue damage. Therefore, reducing macrophage-derived proinflammatory cytokine release represents a promising approach for treating various acute and chronic inflammatory disorders. However, limited macrophage-specific delivery vehicles have hindered the development of macrophage-targeted therapies. In this study, we screened a pool of 112 lipid nanoparticles (LNPs) to identify an optimal LNP formulation for efficient siRNA delivery. Subsequently, by conjugating the macrophage-specific antibody F4/80 to the LNP surface, we constructed MacLNP, an enhanced LNP formulation designed for targeted macrophage delivery. In both in vitro and in vivo experiments, MacLNP demonstrated a significant enhancement in targeting macrophages. Specifically, delivery of siRNA targeting TAK1, a critical kinase upstream of multiple inflammatory pathways, effectively suppressed the phosphorylation/activation of NF-kB. LNP-mediated inhibition of NF-kB, a key upstream regulator in the classic inflammatory signaling pathway, in the murine macrophage cell line RAW264.7 significantly reduced the release of proinflammatory cytokines after stimulation with the viral RNA mimic Poly(I:C). Finally, intranasal administration of MacLNP-encapsulated TAK1 siRNA markedly ameliorated lung injury induced by influenza infection. In conclusion, our findings validate the potential of targeted macrophage interventions in attenuating inflammatory responses, reinforcing the potential of LNP-mediated macrophage targeting to treat pulmonary inflammatory disorders.


Assuntos
Lipossomos , Nanopartículas , Pneumonia Viral , Camundongos , Humanos , Animais , NF-kappa B/metabolismo , Lipídeos/farmacologia , Macrófagos/metabolismo , RNA Interferente Pequeno/metabolismo , Citocinas/metabolismo , Pneumonia Viral/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(25): e2215711120, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37310997

RESUMO

Multiple myeloma (MM), a hematologic malignancy that preferentially colonizes the bone marrow, remains incurable with a survival rate of 3 to 6 mo for those with advanced disease despite great efforts to develop effective therapies. Thus, there is an urgent clinical need for innovative and more effective MM therapeutics. Insights suggest that endothelial cells within the bone marrow microenvironment play a critical role. Specifically, cyclophilin A (CyPA), a homing factor secreted by bone marrow endothelial cells (BMECs), is critical to MM homing, progression, survival, and chemotherapeutic resistance. Thus, inhibition of CyPA provides a potential strategy to simultaneously inhibit MM progression and sensitize MM to chemotherapeutics, improving therapeutic response. However, inhibiting factors from the bone marrow endothelium remains challenging due to delivery barriers. Here, we utilize both RNA interference (RNAi) and lipid-polymer nanoparticles to engineer a potential MM therapy, which targets CyPA within blood vessels of the bone marrow. We used combinatorial chemistry and high-throughput in vivo screening methods to engineer a nanoparticle platform for small interfering RNA (siRNA) delivery to bone marrow endothelium. We demonstrate that our strategy inhibits CyPA in BMECs, preventing MM cell extravasation in vitro. Finally, we show that siRNA-based silencing of CyPA in a murine xenograft model of MM, either alone or in combination with the Food and Drug Administration (FDA)-approved MM therapeutic bortezomib, reduces tumor burden and extends survival. This nanoparticle platform may provide a broadly enabling technology to deliver nucleic acid therapeutics to other malignancies that home to bone marrow.


Assuntos
Mieloma Múltiplo , Estados Unidos , Humanos , Animais , Camundongos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Medula Óssea , RNA Interferente Pequeno/genética , Células Endoteliais , Ciclofilina A , Lipídeos , Microambiente Tumoral
3.
Small ; 20(11): e2304378, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38072809

RESUMO

With six therapies approved by the Food and Drug Association, chimeric antigen receptor (CAR) T cells have reshaped cancer immunotherapy. However, these therapies rely on ex vivo viral transduction to induce permanent CAR expression in T cells, which contributes to high production costs and long-term side effects. Thus, this work aims to develop an in vivo CAR T cell engineering platform to streamline production while using mRNA to induce transient, tunable CAR expression. Specifically, an ionizable lipid nanoparticle (LNP) is utilized as these platforms have demonstrated clinical success in nucleic acid delivery. Though LNPs often accumulate in the liver, the LNP platform used here achieves extrahepatic transfection with enhanced delivery to the spleen, and it is further modified via antibody conjugation (Ab-LNPs) to target pan-T cell markers. The in vivo evaluation of these Ab-LNPs confirms that targeting is necessary for potent T cell transfection. When using these Ab-LNPs for the delivery of CAR mRNA, antibody and dose-dependent CAR expression and cytokine release are observed along with B cell depletion of up to 90%. In all, this work conjugates antibodies to LNPs with extrahepatic tropism, evaluates pan-T cell markers, and develops Ab-LNPs capable of generating functional CAR T cells in vivo.


Assuntos
Nanopartículas , Receptores de Antígenos Quiméricos , Receptores de Antígenos Quiméricos/genética , Lipossomos , Transfecção , Anticorpos , Engenharia Celular , RNA Interferente Pequeno
4.
Nat Mater ; 22(12): 1571-1580, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37696939

RESUMO

Chimeric antigen receptor T (CAR T) cell immunotherapy is successful at treating many cancers. However, it often induces life-threatening cytokine release syndrome (CRS) and neurotoxicity. Here, we show that in situ conjugation of polyethylene glycol (PEG) to the surface of CAR T cells ('PEGylation') creates a polymeric spacer that blocks cell-to-cell interactions between CAR T cells, tumour cells and monocytes. Such blockage hinders intensive tumour lysing and monocyte activation by CAR T cells and, consequently, decreases the secretion of toxic cytokines and alleviates CRS-related symptoms. Over time, the slow expansion of CAR T cells decreases PEG surface density and restores CAR T cell-tumour-cell interactions to induce potent tumour killing. This occurs before the restoration of CAR T cell-monocyte interactions, opening a therapeutic window for tumour killing by CAR T cells before monocyte overactivation. Lethal neurotoxicity is also lower when compared with treatment with the therapeutic antibody tocilizumab, demonstrating that in situ PEGylation of CAR T cells provides a materials-based strategy for safer cellular immunotherapy.


Assuntos
Neoplasias , Síndromes Neurotóxicas , Receptores de Antígenos Quiméricos , Humanos , Síndrome da Liberação de Citocina/tratamento farmacológico , Síndrome da Liberação de Citocina/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Receptores de Antígenos Quiméricos/uso terapêutico , Imunoterapia Adotiva , Síndromes Neurotóxicas/tratamento farmacológico , Síndromes Neurotóxicas/metabolismo , Linfócitos T
5.
Anal Bioanal Chem ; 416(13): 3195-3203, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38613682

RESUMO

We propose a sensitive H1N1 virus fluorescence biosensor based on ligation-transcription and CRISPR/Cas13a-assisted cascade amplification strategies. Products are generated via the hybridization of single-stranded DNA (ssDNA) probes containing T7 promoter and crRNA templates to a target RNA sequence using SplintR ligase. This generates large crRNA quantities in the presence of T7 RNA polymerase. At such crRNA quantities, ternary Cas13a, crRNA, and activator complexes are successfully constructed and activate Cas13a to enhance fluorescence signal outputs. The biosensor sensitively and specifically monitored H1N1 viral RNA levels down to 3.23 pM and showed good linearity when H1N1 RNA concentrations were 100 pM-1 µM. Biosensor specificity was also excellent. Importantly, our biosensor may be used to detect other viral RNAs by altering the sequences of the two probe junctions, with potential applications for the clinical diagnosis of viruses and other biomedical studies.


Assuntos
Técnicas Biossensoriais , Sistemas CRISPR-Cas , Vírus da Influenza A Subtipo H1N1 , RNA Viral , Técnicas Biossensoriais/métodos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , RNA Viral/análise , RNA Viral/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Humanos , Limite de Detecção , Fluorescência , Transcrição Gênica
6.
J Adolesc ; 95(7): 1463-1477, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37455393

RESUMO

INTRODUCTION: Future self-continuity has been shown to have a protective effect against depression. This study aims to investigate the longitudinal relationship between future self-continuity and depression among college students, and to explore the mediating role of the presence of meaning and the moderating role of perceived social support. METHODS: We conducted two studies in China in 2022 and 2023. Study 1 was a longitudinal cross-lagged study that examined the relationship between future self-continuity and depression among 173 participants (49.13% females, Mage = 19.39, SD = 1.63). Study 2 was a cross-sectional study that explored the mediating role of the presence of meaning and the moderating role of perceived social support among 426 participants (48.59% females, Mage = 19.30, SD = 1.60). RESULTS: Study 1 showed that future self-continuity (T1) could significantly predict depression (T2), but depression (T1) could not predict future self-continuity (T2). Study 2 showed that after controlling for gender, the presence of meaning mediated the relationship between future self-continuity and depression, whereas perceived social support moderated the first half of the mediated model's pathway and the direct pathway. CONCLUSIONS: These findings suggest that enhancing the future self-continuity of college students and increasing the level of presence of meaning are effective measures for alleviating depression. Meanwhile, educators and families are called upon to provide more social support to college students.


Assuntos
Depressão , Apoio Social , Feminino , Humanos , Adulto Jovem , Adulto , Masculino , Depressão/epidemiologia , Estudos Transversais , Estudantes , China/epidemiologia
7.
Angew Chem Int Ed Engl ; 62(47): e202306565, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37432074

RESUMO

The growth of living systems is ubiquitous. Living organisms can continually update their sizes, shapes, and properties to meet various environmental challenges. Such a capability is also demonstrated by emerging self-growing materials that can incorporate externally provided compounds to grow as living organisms. In this Minireview, we summarize these materials in terms of six aspects. First, we discuss their essential characteristics, then describe the strategies for enabling crosslinked organic materials to self-grow from nutrient solutions containing polymerizable compounds. The developed examples are grouped into five categories based on their molecular mechanisms. We then explain the mechanism of mass transport within polymer networks during growth, which is critical for controlling the shape and morphology of the grown products. Afterwards, simulation models built to explain the interesting phenomena observed in self-growing materials are discussed. The development of self-growing materials is accompanied by various applications, including tuning bulk properties, creating textured surfaces, growth-induced self-healing, 4D printing, self-growing implants, actuation, self-growing structural coloration, and others. These examples are then summed up. Finally, we discuss the opportunities brought by self-growing materials and their facing challenges.

8.
J Am Chem Soc ; 144(22): 9926-9937, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35616998

RESUMO

The development of lipid nanoparticle (LNP) formulations for targeting the bone microenvironment holds significant potential for nucleic acid therapeutic applications including bone regeneration, cancer, and hematopoietic stem cell therapies. However, therapeutic delivery to bone remains a significant challenge due to several biological barriers, such as low blood flow in bone, blood-bone marrow barriers, and low affinity between drugs and bone minerals, which leads to unfavorable therapeutic dosages in the bone microenvironment. Here, we construct a series of bisphosphonate (BP) lipid-like materials possessing a high affinity for bone minerals, as a means to overcome biological barriers to deliver mRNA therapeutics efficiently to the bone microenvironment in vivo. Following in vitro screening of BP lipid-like materials formulated into LNPs, we identified a lead BP-LNP formulation, 490BP-C14, with enhanced mRNA expression and localization in the bone microenvironment of mice in vivo compared to 490-C14 LNPs in the absence of BPs. Moreover, BP-LNPs enhanced mRNA delivery and secretion of therapeutic bone morphogenetic protein-2 from the bone microenvironment upon intravenous administration. These results demonstrate the potential of BP-LNPs for delivery to the bone microenvironment, which could potentially be utilized for a range of mRNA therapeutic applications including regenerative medicine, protein replacement, and gene editing therapies.


Assuntos
Lipídeos , Nanopartículas , Animais , Difosfonatos/farmacologia , Lipossomos , Camundongos , RNA Mensageiro/genética , RNA Interferente Pequeno/genética
9.
Anal Bioanal Chem ; 414(29-30): 8437-8445, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36264297

RESUMO

This study provides proof of concept of a colorimetric biosensor for influenza H1N1 virus assay based on the CRISPR/Cas13a system and hybridization chain reaction (HCR). Target RNA of influenza H1N1 virus activated the trans-cleavage activity of Cas13a, which cleaved the special RNA sequence (-UUU-) of the probe, further initiating HCR to copiously generate G-rich DNA. Abundant G-quadruplex/hemin was formed in the presence of hemin, thus catalyzing a colorimetric reaction. The colorimetric biosensor exhibited a linear relationship from 10 pM to 100 nM. The detection limit was 0.152 pM. The biosensor specificity was excellent. This new and sensitive detection method for influenza virus is a promising rapid influenza diagnostic test.


Assuntos
Técnicas Biossensoriais , DNA Catalítico , Quadruplex G , Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Humanos , Hemina , DNA Catalítico/metabolismo , Vírus da Influenza A Subtipo H1N1/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Influenza Humana/diagnóstico , Técnicas Biossensoriais/métodos
10.
Neural Plast ; 2022: 3995227, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36406589

RESUMO

Voltage-gated sodium channel beta 2 (Nav2.2 or Navß2, coded by SCN2B mRNA), a gene involved in maintaining normal physiological functions of the prefrontal cortex and hippocampus, might be associated with prefrontal cortex aging and memory decline. This study investigated the effects of Navß2 in amyloid-ß 1-42- (Aß1-42-) induced neural injury model and the potential underlying molecular mechanism. The results showed that Navß2 knockdown restored neuronal viability of Aß1-42-induced injury in neurons; increased the contents of brain-derived neurotrophic factor (BDNF), enzyme neprilysin (NEP) protein, and NEP enzyme activity; and effectively altered the proportions of the amyloid precursor protein (APP) metabolites including Aß42, sAPPα, and sAPPß, thus ameliorating cognitive dysfunction. This may be achieved through regulating NEP transcription and APP metabolism, accelerating Aß degradation, alleviating neuronal impairment, and regulating BDNF-related signal pathways to repair neuronal synaptic efficiency. This study provides novel evidence indicating that Navß2 plays crucial roles in the repair of neuronal injury induced by Aß1-42 both in vivo and in vitro.


Assuntos
Disfunção Cognitiva , Canais de Sódio Disparados por Voltagem , Humanos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Neurônios/metabolismo , Canais de Sódio Disparados por Voltagem/metabolismo , Neprilisina/genética , Neprilisina/metabolismo , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/metabolismo
11.
Molecules ; 27(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36500259

RESUMO

Herein, a simple approach for the fabrication of luminous self-assembled fibers based on halogen-bonded azopyridine complexes and oleic acid-modified quantum dots (QDs) is reported. The QDs uniformly align on the edge of the self-assembled fibers through the formation of van der Waals force between the alkyl chain of oleic acid on the QD surface and the alkyl chain of the halogen-bonded complexes, 15Br or 15I. Furthermore, the intermolecular interaction mechanism was elucidated by using Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, and density functional theory (DFT) calculations. This approach results in retention of the fluorescence properties of the QDs in the fibers. In addition, the bromine-bonded fibers can be assembled into tailored directional fibers upon evaporation of the solvent (tetrahydrofuran) when using capillaries via the capillary force. Interestingly, the mesogenic properties of the halogen-bonded complexes are preserved in the easily prepared halogen-bonded fluorescent fibers; this provides new insight into the design of functional self-assembly materials.


Assuntos
Halogênios , Pontos Quânticos , Halogênios/química , Ácido Oleico , Bromo , Espectroscopia de Infravermelho com Transformada de Fourier
12.
Eur J Neurosci ; 54(6): 6304-6321, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34405468

RESUMO

Neonatal hypoxic-ischaemic (HI) injury is a serious complication of neonatal asphyxia and the leading cause of neonatal acute death and chronic neurological injury, and the effective therapeutic method is lacking to improve patients' outcomes. We reported in this study that panax notoginseng saponin (PNS) may provide a treatment option for HI. HI model was established using neonatal Sprague-Dawley rats and then intraperitoneally injected with different dosage of PNS, once a day for 7 days. Histological staining and behavioural evaluations were performed to elucidate the pathological changes and neurobehavioural variation after PNS treatment. We found PNS administration significantly reduced the infarct volume of brain tissues and improved the autonomous activities of neonatal rats, especially with higher dosage. PNS treatment at 40 mg/kg reduced neuronal damage, suppressed neuronal apoptosis and depressed astroglial reactive response. Moreover, the long-term cognitive and motor functions were also improved after PNS treatment at 40 mg/kg. Importantly, PNS treatment elevated the levels of BDNF and TrkB but decreased the expression of p75NTR both in the cortex and hippocampus of HI rats. The therapeutic efficacy of PNS might be correlated with PNS-activated BDNF/TrkB signalling and inactivation of p75NTR expression, providing a novel potential therapy for alleviating HI injury.


Assuntos
Panax notoginseng , Saponinas , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Humanos , Fatores de Crescimento Neural , Ratos , Ratos Sprague-Dawley , Saponinas/farmacologia
13.
Chemistry ; 26(65): 14828-14832, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-32533881

RESUMO

Developing a novel strategy to synthesize photoresponsive polymers is of significance owing to their potential applications. We report a photoinduced strain-assisted synthesis of main-chain stiff-stilbene polymers by using ring-opening metathesis polymerization (ROMP), activating a macrocyclic π-bond connected to a stiff-stilbene photoswitch through a linker. Since the linker acts as an external constraint, the photoisomerization to the E-form leads to the stiff-stilbene being strained and thus reactive to ROMP. The photoisomerization of Z-form to E-form was investigated using time-dependent NMR studies and UV/Vis spectroscopy. The DFT calculation showed that the E-form was less stable due to a lack of planarity. By the internal strain developed due to the linker constraint through photoisomerization, the E-form underwent ROMP by a second generation Grubbs catalyst. In contrast, Z-form did not undergo polymerization under similar conditions. The MALDI-TOF spectrum of E-form after polymerization showed the presence of oligomers of >5.2 kDa.

14.
Cell Mol Neurobiol ; 40(5): 737-750, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31916069

RESUMO

Neonatal hypoxic-ischemic encephalopathy (HIE) is a major cause of lifelong disabilities worldwide, without effective therapies and clear regulatory mechanisms. MicroRNAs (miRNAs) act as a significant regulator in neuroregeneration and neuronal apoptosis, thus holding great potential as therapeutic targets in HIE. In this study, we established the hypoxia-ischemia (HI) model in vivo and oxygen-glucose deprivation (OGD) model in vitro. Zea-longa score and magnetic resonance imaging were applied to verify HI-induced neuronal dysfunction and brain infarction. Subsequently, a miRNA microarray analysis was employed to profile miRNA transcriptomes. Down-regulated miR-124 was found 24 h after HIE, which corresponded to the change in PC12, SHSY5Y, and neurons after OGD. To determine the function of miR-124, mimics and lentivirus-mediated overexpression were used to regulate miR-124 in vivo and in vitro, respectively. Our results showed that miR-124 overexpression obviously promoted cell survival and suppressed neuronal apoptosis. Further, the memory and neurological function of rats was also obviously improved at 1 and 2 months after HI, indicated by the neurological severity score, Y-maze test, open field test, and rotating rod test. Our findings showed that overexpression of miR-124 can be a promising new strategy for HIE therapy in future clinical practice.


Assuntos
Hipóxia Fetal/complicações , Hipóxia Fetal/terapia , Hipóxia-Isquemia Encefálica/prevenção & controle , Hipóxia-Isquemia Encefálica/fisiopatologia , MicroRNAs/metabolismo , Animais , Técnicas de Diagnóstico Neurológico , Encefalite/etiologia , Hipóxia Fetal/patologia , Glucose/deficiência , Hipóxia-Isquemia Encefálica/complicações , MicroRNAs/genética , Células PC12 , Ratos , Ratos Sprague-Dawley
15.
Angew Chem Int Ed Engl ; 59(14): 5611-5615, 2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-31840399

RESUMO

A solid-to-hollow evolution in macroscopic structures is challenging in synthetic materials. A fundamentally new strategy is reported for guiding macroscopic, unidirectional shape evolution of materials without compromising the material's integrity. This strategy is based on the creation of a field with a "swelling pole" and a "shrinking pole" to drive polymers to disassemble, migrate, and resettle in the targeted region. This concept is demonstrated using dynamic hydrogels containing anchored acrylic ligands and hydrophobic long alkyl chains. Adding water molecules and ferric ions (Fe3+ ) to induce a swelling-shrinking field transforms the hydrogels from solid to hollow. The strategy is versatile in the generation of various closed hollow objects (for example, spheres, helix tubes, and cubes with different diameters) for different applications.

16.
Appl Environ Microbiol ; 85(4)2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30552184

RESUMO

Microalgae are promising alternatives for sustainable biodiesel production. Previously, it was found that 100 ppm triethylamine greatly enhanced lipid production and lipid content per cell of Dunaliella tertiolecta by 20% and 80%, respectively. However, triethylamine notably reduced biomass production and pigment contents. In this study, a two-stage cultivation with glycerol and triethylamine was attempted to improve cell biomass and lipid accumulation. At the first stage with 1.0 g/liter glycerol addition, D. tertiolecta cells reached the late log phase in a shorter time due to rapid cell growth, leading to the highest cell biomass (1.296 g/liter) for 16 days. However, the increased glycerol concentrations with glycerol addition decreased the lipid content. At the second-stage cultivation with 100 ppm triethylamine, the highest lipid concentration and lipid weight content were 383.60 mg/liter and 37.7% of dry cell weight (DCW), respectively, in the presence of 1.0 g/liter glycerol, which were 27.36% and 72.51% higher than those of the control group, respectively. Besides, the addition of glycerol alleviated the inhibitory effect of triethylamine on cell morphology, algal growth, and pigment accumulation in D. tertiolecta The results indicated that two-stage cultivation is a viable way to improve lipid yield in microalgae.IMPORTANCE Microalgae are promising alternatives for sustainable biodiesel production. Two-stage cultivation with glycerol and triethylamine enhanced the lipid productivity of Dunaliella tertiolecta, indicating that two-stage cultivation is an efficient strategy for biodiesel production from microalgae. It was found that glycerol significantly enhanced cell biomass of D. tertiolecta, and the presence of glycerol alleviated the inhibitory effect of triethylamine on algal growth. Glycerol, the major byproduct from biodiesel production, was used for the biomass accumulation of D. tertiolecta at the first stage of cultivation. Triethylamine, as a lipid inducer, was used for lipid accumulation at the second stage of cultivation. Two-stage cultivation with glycerol and triethylamine enhanced lipid productivity and alleviated the inhibitory effect of triethylamine on the algal growth of D. tertiolecta, which is an efficient strategy for lipid production from D. tertiolecta.


Assuntos
Biomassa , Clorofíceas/crescimento & desenvolvimento , Etilaminas/metabolismo , Glicerol/metabolismo , Lipídeos/biossíntese , Microalgas/crescimento & desenvolvimento , Biocombustíveis , Biotecnologia/métodos , Clorofíceas/citologia , Clorofíceas/efeitos dos fármacos , Clorofíceas/metabolismo , Etilaminas/efeitos adversos , Glicerol/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Microalgas/citologia , Microalgas/efeitos dos fármacos , Microalgas/metabolismo , Pigmentos Biológicos/análise
19.
J Org Chem ; 82(18): 9515-9524, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28825296

RESUMO

An efficient cascade reaction via trapping in situ generated active intermediate 1,4-oxazepine, formed from base-promoted 7-exo-dig cyclization reaction of N-propargyl enaminone, has been developed. Alcohols/thiols and aldehydes were used as trapping agents, providing 2-alkoxy/2-sulfenylpyridines and dihydrofuro[2,3-b]pyridines in moderate to high yields. This cascade reaction was completed within 30 min at room temperature, generating 1 equiv of H2O as the sole byproduct.

20.
J Org Chem ; 81(17): 7539-44, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27405000

RESUMO

An efficient synthesis of C4-functionalized quinolines through copper-catalyzed tandem annulation of alkynyl imines with diazo compounds is described. This transformation involves an in situ formation of allene and intramolecular electrocyclization, which features high efficiency, mild reaction conditions, easy operation, and broad functional-group tolerance. A wide variety of C4-functionalized quinolines were provided in up to 92% yield for 33 examples.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa