Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 59(16): 2182-2198, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36723187

RESUMO

Metal materials are susceptible to the influence of environmental media, and chemical or electrochemical multiphase reactions occur on the metal surface, resulting in the corrosion of metal materials, which can directly damage the geometry and reduce the physical properties of metal materials. This corrosion damage can seriously affect the long-term use of metal materials in marine equipment and the aerospace industry, and other fields. Inspired by the special microstructure and slippery properties of natural nepenthes intine, researchers have prepared slippery liquid-infused porous surfaces (SLIPS) with a stable continuous lubricant layer by injecting low-surface-energy lubricants into a substrate with a micro/nano-porous structure. This surface has excellent hydrophobicity, low friction, non-adhesiveness, and self-healing properties. The broad application prospects of SLIPS in the fields of anti-corrosion, anti-icing, anti-bacteria, and anti-fouling have made it a hot research topic directing the study of biomimetic materials at present. However, SLIPS are susceptible to environmental shear forces, such as ocean flow or extraneous fluids, resulting in destruction of the porous structure and loss of surface lubricant, thereby depriving SLIPS of the ability to protect metals from corrosion. Therefore, it is important for metal corrosion protection to find ways to improve the stability and extend the service life of SLIPS. Over the last several years, research into and development of SLIPS have come a long way. Herein, a summary of available reports on SLIPS is given in terms of design principles and their performance characteristics, the construction of rough/porous substrate structures, the choice of low-surface-energy modifiers and lubricants, and lubricant infusion methods. Ways of constructing different substrate structures and the characteristics, advantages, and disadvantages of choosing various modifiers and lubricants to prepare the surface are compared. Finally, a comprehensive summary and outlook of SLIPS with anti-corrosion properties are provided. We are convinced that a comprehensive review of SLIPS will provide important guidance and strong reference for the design and preparation of green and economical SLIPS with anti-corrosion capabilities in the future.

2.
ACS Appl Mater Interfaces ; 14(26): 30192-30204, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35731779

RESUMO

A self-healing coating possesses a broad application prospect in the metal corrosion protection area due to its pleasurable performance. By far, despite a great deal of research studies that have been reported in this field, it is still a challenge to construct an intrinsic self-healing surface that can repair a damaged structure and restore superhydrophobicity simultaneously. Herein, a self-healing superhydrophobic coating was fabricated by combining polydopamine (PDA)-functionalized Cu2+-doped graphene oxide (GO), octadecylamine (ODA), and polydimethylsiloxane (PDMS), which can recover the superhydrophobicity and microstructure of the coating after chemical/physical damage. The as-prepared self-healing coating displayed excellent liquid repellency with a water contact angle of 158.2 ± 2° and a sliding angle of 4 ± 1°, which endowed the Mg alloy with excellent anticorrosion performance. Once the coating is scratched, the local damaged structure will be automatically repaired through the chelation of catechol and Cu2+. Also, the superhydrophobicity of the coating can be rapidly restored under 1-sun irradiation even after being etched by O2 plasma. Furthermore, the as-fabricated self-healing coating still exhibited excellent corrosion protection against a magnesium alloy after immersion in 3.5 wt % NaCl solution for 30 days, which was attributed to the efficient repair of defects in GO by PDA through π-π interactions and the inherent chemical inertia of PDMS. Moreover, the as-fabricated self-healing coating also exhibited favorable mechanical stability, chemical durability, and weather resistance. This study paves a fresh insight into the design of robust self-healing coatings with huge application potential.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa