Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Appl Environ Microbiol ; 90(9): e0123724, 2024 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-39207158

RESUMO

Hydroxysteroid dehydrogenases (HSDHs) catalyze the oxidation/reduction of hydroxyl/keto groups of steroids with high regio- or stereoselectivity, playing an essential role in producing optically pure chemicals. In this work, a novel approach was developed to simultaneously improve the stability and activity of 7ß-hydroxysteroid dehydrogenase (7ß-HSDH) by combining B-factor analysis and computer-aided prediction. Several advantageous mutants were identified, and the most promising variant, S51Y/P202Y, exhibited 2.3-fold improvements in catalytic activity, 3.3-fold in half-life at 40°C, and 4.7-fold in catalytic efficiency (kcat/Km), respectively. Structural modeling analysis showed that the shortened reversible oxidation reaction catalytic distance and the strengthened residue interactions compared to the wild type were attributed to the improved stability and activity of the obtained mutants. To synthesize ursodeoxycholic acid cost-effectively by mutant S51Y/P202Y, a NAD-kinase was employed to facilitate the substitution of nicotinamide adenine dinucleotide phosphate (NADP+) with nicotinamide adenine dinucleotide (NAD+) in the whole-cell catalysis system. The substrate 7-ketolithocholic acid (100 mM) was converted completely in 0.5 h, achieving a space-time yield of 1,887.3 g L-1 d-1. This work provided a general target-oriented strategy for obtaining stable and highly active dehydrogenase for efficient biosynthesis. IMPORTANCE: Hydroxysteroid dehydrogenases have emerged as indispensable tools in the synthesis of steroids, bile acids, and other steroid derivatives for the pharmaceutical and chemical industries. In this study, a novel approach was developed to simultaneously improve the stability and activity of a hydroxysteroid dehydrogenase by combining B-factor analysis and computer-aided prediction. This semi-rational method was demonstrated to be highly effective for enzyme engineering. In addition, NAD kinase was introduced to convert NAD+ to NADP+ for effective coenzyme regeneration in the whole-cell multienzyme-catalyzed system. This strategy reduces the significant economic costs associated with externally supplemented cofactors in NADP-dependent biosynthetic pathways.


Assuntos
Hidroxiesteroide Desidrogenases , Ácido Ursodesoxicólico , Hidroxiesteroide Desidrogenases/genética , Hidroxiesteroide Desidrogenases/metabolismo , Hidroxiesteroide Desidrogenases/química , Ácido Ursodesoxicólico/metabolismo , Ácido Ursodesoxicólico/química , Estabilidade Enzimática , Engenharia de Proteínas , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , NADP/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/enzimologia , NAD/metabolismo
2.
Appl Environ Microbiol ; 90(2): e0174023, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38193674

RESUMO

Pichia pastoris (P. pastoris) is one of the most popular cell factories for expressing exogenous proteins and producing useful chemicals. The alcohol oxidase 1 promoter (PAOX1) is the most commonly used strong promoter in P. pastoris and has the characteristic of biphasic expression. However, the inducer for PAOX1, methanol, has toxicity and poses risks in industrial settings. In the present study, analyzing transcriptomic data of cells collected at different stages of growth found that the formate dehydrogenase (FDH) gene ranked 4960th in relative expression among 5032 genes during the early logarithmic growth phase but rose to the 10th and 1st during the middle and late logarithmic growth phases, respectively, displaying a strict biphasic expression characteristic. The unique transcriptional regulatory profile of the FDH gene prompted us to investigate the properties of its promoter (PFDH800). Under single-copy conditions, when a green fluorescent protein variant was used as the expression target, the PFDH800 achieved 119% and 69% of the activity of the glyceraldehyde-3-phosphate dehydrogenase promoter and PAOX1, respectively. After increasing the copy number of the expression cassette in the strain to approximately four copies, the expression level of GFPuv driven by PFDH800 increased to approximately 2.5 times that of the strain containing GFPuv driven by a single copy of PAOX1. Our PFDH800-based expression system exhibited precise biphasic expression, ease of construction, minimal impact on normal cellular metabolism, and high strength. Therefore, it has the potential to serve as a new expression system to replace the PAOX1 promoter.IMPORTANCEThe alcohol oxidase 1 promoter (PAOX1) expression system has the characteristics of biphasic expression and high expression levels, making it the most widely used promoter in the yeast Pichia pastoris. However, PAOX1 requires methanol induction, which can be toxic and poses a fire hazard in large quantities. Our research has found that the activity of PFDH800 is closely related to the growth state of cells and can achieve biphasic expression without the need for an inducer. Compared to other reported non-methanol-induced biphasic expression systems, the system based on the PFDH800 offers several advantages, including high expression levels, simple construction, minimal impact on cellular metabolism, no need for an inducer, and the ability to fine-tune expression.


Assuntos
Metanol , Pichia , Saccharomycetales , Metanol/metabolismo , Pichia/genética , Pichia/metabolismo , Regulação Fúngica da Expressão Gênica , Regiões Promotoras Genéticas , Proteínas Recombinantes/metabolismo
3.
Biotechnol Bioeng ; 121(9): 2893-2906, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38822747

RESUMO

D-amino acid oxidase (DAAO)-catalyzed selective oxidative deamination is a very promising process for synthesizing l-amino acids including l-phosphinothricin (l-PPT, a high-efficiency and broad-spectrum herbicide). However, the wild-type DAAO's low activity toward unnatural substrates like d-phosphinothricin (d-PPT) hampers its application. Herein, a DAAO from Caenorhabditis elegans (CeDAAO) was screened and engineered to improve the catalytic potential on d-PPT. First, we designed a novel growth selection system, taking into account the intricate relationship between the growth of Escherichia coli (E. coli) and the catalytic mechanism of DAAO. The developed system was used for high-throughput screening of gene libraries, resulting in the discovery of a variant (M6) with significantly increased catalytic activity against d-PPT. The variant displays different catalytic properties on substrates with varying hydrophobicity and hydrophilicity. Analysis using Alphafold2 modeling and molecular dynamic simulations showed that the reason for the enhanced activity was the substrate-binding pocket with enlarged size and suitable charge distribution. Further QM/MM calculations revealed that the crucial factor for enhancing activity lies in reducing the initial energy barrier of the reductive half reaction. Finally, a comprehensive binding-model index to predict the enhanced activity of DAAO toward d-PPT, and an enzymatic deracemization approach was developed, enabling the efficient synthesis of l-PPT with remarkable efficiency.


Assuntos
Aminobutiratos , Caenorhabditis elegans , D-Aminoácido Oxidase , Escherichia coli , Engenharia de Proteínas , D-Aminoácido Oxidase/metabolismo , D-Aminoácido Oxidase/genética , D-Aminoácido Oxidase/química , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/enzimologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/metabolismo , Engenharia de Proteínas/métodos , Animais , Aminobutiratos/metabolismo , Aminobutiratos/química , Desaminação , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/química
4.
Org Biomol Chem ; 22(15): 3009-3018, 2024 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-38529785

RESUMO

Catalytic activity is undoubtedly a key focus in enzyme engineering. The complicated reaction conditions hinder some enzymes from industrialization even though they have relatively promising activity. This has occurred to some dehydrogenases. Hydroxysteroid dehydrogenases (HSDHs) specifically catalyze the conversion between hydroxyl and keto groups, and hold immense potential in the synthesis of steroid medicines. We underscored the importance of 7α-HSDH activity, and analyzed the overall robustness and underlying mechanisms. Employing a high-throughput screening approach, we comprehensively assessed a mutation library, and obtained a mutant with enhanced enzymatic activity and overall stability/tolerance. The superior mutant (I201M) was identified to harbor improved thermal stability, substrate susceptibility, cofactor affinity, as well as the yield. This mutant displayed a 1.88-fold increase in enzymatic activity, a 1.37-fold improvement in substrate tolerance, and a 1.45-fold increase in thermal stability when compared with the wild type (WT) enzyme. The I201M mutant showed a 2.25-fold increase in the kcat/KM ratio (indicative of a stronger binding affinity for the cofactor). This mutant did not exhibit the highest enzyme activity compared with all the tested mutants, but these improved characteristics contributed synergistically to the highest yield. When a substrate at 100 mM was present, the 24 h yield by I201M reached 89.7%, significantly higher than the 61.2% yield elicited by the WT enzyme. This is the first report revealing enhancement of the catalytic efficiency, cofactor affinity, substrate tolerance, and thermal stability of NAD(H)-dependent 7α-HSDH through a single-point mutation. The mutated enzyme reached the highest enzymatic activity of 7α-HSDH ever reported. High enzymatic activity is undoubtedly crucial for enabling the industrialization of an enzyme. Our findings demonstrated that, when compared with other mutants boasting even higher enzymatic activity, mutants with excellent overall robustness were superior for industrial applications. This principle was exemplified by highly active enzymes such as 7α-HSDH.


Assuntos
Hidroxiesteroide Desidrogenases , Mutação Puntual , Hidroxiesteroide Desidrogenases/genética , Hidroxiesteroide Desidrogenases/metabolismo , Mutação , Catálise , Cinética
5.
Appl Microbiol Biotechnol ; 108(1): 320, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709366

RESUMO

The unspecific peroxygenase (UPO) from Cyclocybe aegerita (AaeUPO) can selectively oxidize C-H bonds using hydrogen peroxide as an oxygen donor without cofactors, which has drawn significant industrial attention. Many studies have made efforts to enhance the overall activity of AaeUPO expressed in Komagataella phaffii by employing strategies such as enzyme-directed evolution, utilizing appropriate promoters, and screening secretion peptides. Building upon these previous studies, the objective of this study was to further enhance the expression of a mutant of AaeUPO with improved activity (PaDa-I) by increasing the gene copy number, co-expressing chaperones, and optimizing culture conditions. Our results demonstrated that a strain carrying approximately three copies of expression cassettes and co-expressing the protein disulfide isomerase showed an approximately 10.7-fold increase in volumetric enzyme activity, using the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) as the substrate. After optimizing the culture conditions, the volumetric enzyme activity of this strain further increased by approximately 48.7%, reaching 117.3 U/mL. Additionally, the purified catalytic domain of PaDa-I displayed regioselective hydroxylation of R-2-phenoxypropionic acid. The results of this study may facilitate the industrial application of UPOs. KEY POINTS: • The secretion of the catalytic domain of PaDa-I can be significantly enhanced through increasing gene copy numbers and co-expressing of protein disulfide isomerase. • After optimizing the culture conditions, the volumetric enzyme activity can reach 117.3 U/mL, using the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) as the substrate. • The R-2-phenoxypropionic acid can undergo the specific hydroxylation reaction catalyzed by catalytic domain of PaDa-I, resulting in the formation of R-2-(4-hydroxyphenoxy)propionic acid.


Assuntos
Oxigenases de Função Mista , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Oxigenases de Função Mista/química , Saccharomycetales/genética , Saccharomycetales/enzimologia , Saccharomycetales/metabolismo , Dosagem de Genes , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , Expressão Gênica , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/química
6.
Appl Microbiol Biotechnol ; 108(1): 184, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38289384

RESUMO

Transaminase (TA) is a crucial biocatalyst for enantioselective production of the herbicide L-phosphinothricin (L-PPT). The use of enzymatic cascades has been shown to effectively overcome the unfavorable thermodynamic equilibrium of TA-catalyzed transamination reaction, also increasing demand for TA stability. In this work, a novel thermostable transaminase (PtTA) from Pseudomonas thermotolerans was mined and characterized. The PtTA showed a high specific activity (28.63 U/mg) towards 2-oxo-4-[(hydroxy)(methyl)phosphinoyl]butyric acid (PPO), with excellent thermostability and substrate tolerance. Two cascade systems driven by PtTA were developed for L-PPT biosynthesis, including asymmetric synthesis of L-PPT from PPO and deracemization of D, L-PPT. For the asymmetric synthesis of L-PPT from PPO, a three-enzyme cascade was constructed as a recombinant Escherichia coli (E. coli G), by co-expressing PtTA, glutamate dehydrogenase (GluDH) and D-glucose dehydrogenase (GDH). Complete conversion of 400 mM PPO was achieved using only 40 mM amino donor L-glutamate. Furthermore, by coupling D-amino acid aminotransferase (Ym DAAT) from Bacillus sp. YM-1 and PtTA, a two-transaminase cascade was developed for the one-pot deracemization of D, L-PPT. Under the highest reported substrate concentration (800 mM D, L-PPT), a 90.43% L-PPT yield was realized. The superior catalytic performance of the PtTA-driven cascade demonstrated that the thermodynamic limitation was overcome, highlighting its application prospect for L-PPT biosynthesis. KEY POINTS: • A novel thermostable transaminase was mined for L-phosphinothricin biosynthesis. • The asymmetric synthesis of L-phosphinothricin was achieved via a three-enzyme cascade. • Development of a two-transaminase cascade for D, L-phosphinothricin deracemization.


Assuntos
Aminobutiratos , Escherichia coli , Transaminases , Transaminases/genética , Escherichia coli/genética , Ácido Butírico , Glucose 1-Desidrogenase , Ácido Glutâmico
7.
Chembiochem ; 24(12): e202300165, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37170827

RESUMO

We developed a synthetic route for producing 3-amino-2-hydroxy acetophenone (3AHAP) from m-nitroacetophenone (3NAP) using an in vitro approach. Various reaction systems were evaluated, and a direct reaction method with crude enzyme and supersaturated substrates for optimal catalytic efficiency was chosen. The reaction system included three enzymes and was enhanced by adjusting enzyme molar ratios and optimizing ribosomal binding sites. We performed substrate docking and alanine scanning to identify key sites in the enzymes nitrobenzene nitroreductase (nbzA) and hydroxylaminobenzene mutase (habA). The optimal mutant was obtained through site-directed mutagenesis, and incorporated into the reaction system, resulting in increased product yield. After optimization, the yield of 3AHAP increased from 75 mg/L to 580 mg/L within 5 hours, the highest reported yield using biosynthesis. This work provides a promising strategy for the efficient and sustainable production of 3AHAP, which has critical applications in the chemical and pharmaceutical industries.


Assuntos
Acetofenonas , Biossíntese de Proteínas , Catálise , Acetofenonas/metabolismo
8.
Appl Environ Microbiol ; 89(11): e0110623, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-37902313

RESUMO

IMPORTANCE: The adenosine 5'-triphosphate (ATP) regeneration system can significantly reduce the cost of many biocatalytic processes. Numerous studies have endeavored to utilize the ATP regeneration system based on Cytophaga hutchinsonii PPK (ChPPK). However, the wild-type ChPPK enzyme possesses limitations such as low enzymatic activity, poor stability, and limited substrate tolerance, impeding its application in catalytic reactions. To enhance the performance of ChPPK, we employed a semi-rational design approach to obtain the variant ChPPK/A79G/S106C/I108F/L285P. The enzymatic kinetic parameters and the catalytic performance in the synthesis of nicotinamide mononucleotide demonstrated that the variant ChPPK/A79G/S106C/I108F/L285P exhibited superior enzymatic properties than the wild-type enzyme. All data indicated that our engineered ATP regeneration system holds inherent potential for implementation in biocatalytic processes.


Assuntos
Trifosfato de Adenosina , Escherichia coli , Análise Custo-Benefício , Cytophaga , Regeneração , Adenosina
9.
Biotechnol Bioeng ; 120(10): 2940-2952, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37227020

RESUMO

2-oxo-4-[(hydroxy)(methyl)phosphinoyl]butyric acid (PPO) is the essential precursor keto acid for the asymmetric biosynthesis of herbicide l-phosphinothricin (l-PPT). Developing a biocatalytic cascade for PPO production with high efficiency and low cost is highly desired. Herein, a d-amino acid aminotransferase from Bacillus sp. YM-1 (Ym DAAT) with high activity (48.95 U/mg) and affinity (Km = 27.49 mM) toward d-PPT was evaluated. To circumvent the inhibition of by-product d-glutamate (d-Glu), an amino acceptor (α-ketoglutarate) regeneration cascade was constructed as a recombinant Escherichia coli (E. coli D), by coupling Ym d-AAT, d-aspartate oxidase from Thermomyces dupontii (TdDDO) and catalase from Geobacillus sp. CHB1. Moreover, the regulation of the ribosome binding site was employed to overcome the limiting step of expression toxic protein TdDDO in E. coli BL21(DE3). The aminotransferase-driven whole-cell biocatalytic cascade (E. coli D) showed superior catalytic efficiency for the synthesis of PPO from d,l-phosphinothricin (d,l-PPT). It revealed the production of PPO exhibited high space-time yield (2.59 g L-1 h-1 ) with complete conversion of d-PPT to PPO at high substrate concentration (600 mM d,l-PPT) in 1.5 L reaction system. This study first provides the synthesis of PPO from d,l-PPT employing an aminotransferase-driven biocatalytic cascade.


Assuntos
Escherichia coli , Transaminases , Transaminases/genética , Transaminases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Aminobutiratos/metabolismo , Aminoácidos/metabolismo
10.
Bioprocess Biosyst Eng ; 46(11): 1639-1650, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37733076

RESUMO

With potent herbicidal activity, biocatalysis synthesis of L-glufosinate has drawn attention. In present research, NAP-Das2.3, a deacetylase capable of stereoselectively resolving N-acetyl-L-glufosinate to L-glufosinate mined from Arenimonas malthae, was heterologously expressed and characterized. In Escherichia coli, NAP-Das2.3 activity only reached 0.25 U/L due to the formation of inclusive bodies. Efficient soluble expression of NAP-Das2.3 was achieved in Pichia pastoris. In shake flask and 5 L bioreactor fermentation, NAP-Das2.3 activity by recombinant P. pastoris reached 107.39 U/L and 1287.52 U/L, respectively. The optimum temperature and pH for N-acetyl-glufosinate hydrolysis by NAP-Das2.3 were 45 °C and pH 8.0, respectively. The Km and Vmax of NAP-Das2.3 towards N-acetyl-glufosinate were 25.32 mM and 19.23 µmol mg-1 min-1, respectively. Within 90 min, 92.71% of L-enantiomer in 100 mM racemic N-acetyl-glufosinate was converted by NAP-Das2.3. L-glufosinate with high optical purity (e.e.P above 99.9%) was obtained. Therefore, the recombinant NAP-Das2.3 might be an alternative for L-glufosinate biosynthesis.


Assuntos
Reatores Biológicos , Pichia , Proteínas Recombinantes/química , Pichia/genética , Pichia/metabolismo , Fermentação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa