Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 18(9): 5744-5751, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30111118

RESUMO

Zigzag edges of graphene nanoribbons, which are predicted to host spin-polarized electronic states, hold great promise for future spintronic device applications. The ability to precisely engineer the zigzag edge state is of crucial importance for realizing its full potential functionalities in nanotechnology. By combining scanning tunneling microscopy and atomic force microscopy, we demonstrate the zigzag edge states have energy splitting upon fusing manganese the phthalocyanine molecule with the short armchair graphene nanoribbon termini. Moreover, the edge state splitting can be reversibly switched by adsorption and desorption of a hydrogen atom on the magnetic core of manganese phthalocyanine. These observations can be explained by tuning the zigzag edge local doping through the charge transfer process, which provides a new route to functionalize graphene-based molecular devices.

2.
Nat Commun ; 13(1): 1705, 2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35361812

RESUMO

Triangulene and its homologues are of considerable interest for molecular spintronics due to their high-spin ground states as well as the potential for constructing high spin frameworks. Realizing triangulene-based high-spin system on surface is challenging but of particular importance for understanding π-electron magnetism. Here, we report two approaches to generate triangulene trimers on Au(111) by using surface-assisted dehydration and alkyne trimerization, respectively. We find that the developed dehydration reaction shows much higher chemoselectivity thus resulting in significant promotion of product yield compared to that using alkyne trimerization approach, through cutting the side reaction path. Combined with spin-polarized density functional theory calculations, scanning tunneling spectroscopy measurements identify the septuple (S = 3) high-spin ground state and quantify the collective ferromagnetic interaction among three triangulene units. Our results demonstrate the approaches to fabricate high-quality triangulene-based high spin systems and understand their magnetic interactions, which are essential for realizing carbon-based spintronic devices.

3.
ACS Nano ; 16(7): 10600-10607, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35730577

RESUMO

Coronoids as polycyclic aromatic macrocycles enclosing a cavity have attracted a lot of attention due to their distinctive molecular and electronic structures. They can be also regarded as nanoporous graphene molecules whose electronic properties are critically dependent on the size and topology of their outer and inner peripheries. However, because of their synthetic challenges, the extended hexagonal coronoids with zigzag outer edges have not been reported yet. Here, we report the on-surface synthesis of C144 hexagonal coronoid with outer zigzag edges on a designed precursor undergoing hierarchical Ullmann coupling and cyclodehydrogenation on the Au(111) surface. The molecular structure is unambiguously characterized by bond-resolved noncontact atomic force microscopy imaging. The electronic properties are further investigated by scanning tunneling spectroscopy measurements, in combination with the density functional theory calculations. Moreover, the values of the harmonic oscillator model of aromaticity are derived from calculations that suggest that the molecular structure is ideally represented by Clar's model. Our results provide approaches toward realizing a hexagonal coronoid with zigzag edges, potentially inspiring fabrication of hexagonal zigzag coronoids with multiple radical characters in the future.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa