Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Hum Mol Genet ; 32(20): 2950-2965, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37498175

RESUMO

Structural, functional and molecular cardiac defects have been reported in spinal muscular atrophy (SMA) patients and mouse models. Previous quantitative proteomics analyses demonstrated widespread molecular defects in the severe Taiwanese SMA mouse model. Whether such changes are conserved across different mouse models, including less severe forms of the disease, has yet to be established. Here, using the same high-resolution proteomics approach in the less-severe Smn2B/- SMA mouse model, 277 proteins were found to be differentially abundant at a symptomatic timepoint (post-natal day (P) 18), 50 of which were similarly dysregulated in severe Taiwanese SMA mice. Bioinformatics analysis linked many of the differentially abundant proteins to cardiovascular development and function, with intermediate filaments highlighted as an enriched cellular compartment in both datasets. Lamin A/C was increased in the cardiac tissue, whereas another intermediate filament protein, desmin, was reduced. The extracellular matrix (ECM) protein, elastin, was also robustly decreased in the heart of Smn2B/- mice. AAV9-SMN1-mediated gene therapy rectified low levels of survival motor neuron protein and restored desmin levels in heart tissues of Smn2B/- mice. In contrast, AAV9-SMN1 therapy failed to correct lamin A/C or elastin levels. Intermediate filament proteins and the ECM have key roles in cardiac function and their dysregulation may explain cardiac impairment in SMA, especially since mutations in genes encoding these proteins cause other diseases with cardiac aberration. Cardiac pathology may need to be considered in the long-term care of SMA patients, as it is unclear whether currently available treatments can fully rescue peripheral pathology in SMA.


Assuntos
Neurônios Motores , Atrofia Muscular Espinal , Humanos , Camundongos , Animais , Neurônios Motores/metabolismo , Desmina/genética , Desmina/metabolismo , Elastina/genética , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/terapia , Atrofia Muscular Espinal/patologia , Terapia Genética , Modelos Animais de Doenças , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo
2.
Gene Ther ; 30(12): 812-825, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37322133

RESUMO

Spinal muscular atrophy (SMA) is a neuromuscular disease particularly characterised by degeneration of ventral motor neurons. Survival motor neuron (SMN) 1 gene mutations cause SMA, and gene addition strategies to replace the faulty SMN1 copy are a therapeutic option. We have developed a novel, codon-optimised hSMN1 transgene and produced integration-proficient and integration-deficient lentiviral vectors with cytomegalovirus (CMV), human synapsin (hSYN) or human phosphoglycerate kinase (hPGK) promoters to determine the optimal expression cassette configuration. Integrating, CMV-driven and codon-optimised hSMN1 lentiviral vectors resulted in the highest production of functional SMN protein in vitro. Integration-deficient lentiviral vectors also led to significant expression of the optimised transgene and are expected to be safer than integrating vectors. Lentiviral delivery in culture led to activation of the DNA damage response, in particular elevating levels of phosphorylated ataxia telangiectasia mutated (pATM) and γH2AX, but the optimised hSMN1 transgene showed some protective effects. Neonatal delivery of adeno-associated viral vector (AAV9) vector encoding the optimised transgene to the Smn2B/- mouse model of SMA resulted in a significant increase of SMN protein levels in liver and spinal cord. This work shows the potential of a novel codon-optimised hSMN1 transgene as a therapeutic strategy for SMA.


Assuntos
Infecções por Citomegalovirus , Atrofia Muscular Espinal , Proteína 1 de Sobrevivência do Neurônio Motor , Animais , Humanos , Recém-Nascido , Camundongos , Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/metabolismo , Modelos Animais de Doenças , DNA Complementar/metabolismo , Neurônios Motores/metabolismo , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/terapia , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Fatores de Transcrição/genética , Transgenes
3.
Int J Exp Pathol ; 104(4): 154-176, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37177842

RESUMO

Rare diseases collectively exact a high toll on society due to their sheer number and overall prevalence. Their heterogeneity, diversity, and nature pose daunting clinical challenges for both management and treatment. In this review, we discuss recent advances in clinical applications of gene therapy for rare diseases, focusing on a variety of viral and non-viral strategies. The use of adeno-associated virus (AAV) vectors is discussed in the context of Luxturna, licenced for the treatment of RPE65 deficiency in the retinal epithelium. Imlygic, a herpes virus vector licenced for the treatment of refractory metastatic melanoma, will be an example of oncolytic vectors developed against rare cancers. Yescarta and Kymriah will showcase the use of retrovirus and lentivirus vectors in the autologous ex vivo production of chimeric antigen receptor T cells (CAR-T), licenced for the treatment of refractory leukaemias and lymphomas. Similar retroviral and lentiviral technology can be applied to autologous haematopoietic stem cells, exemplified by Strimvelis and Zynteglo, licenced treatments for adenosine deaminase-severe combined immunodeficiency (ADA-SCID) and ß-thalassaemia respectively. Antisense oligonucleotide technologies will be highlighted through Onpattro and Tegsedi, RNA interference drugs licenced for familial transthyretin (TTR) amyloidosis, and Spinraza, a splice-switching treatment for spinal muscular atrophy (SMA). An initial comparison of the effectiveness of AAV and oligonucleotide therapies in SMA is possible with Zolgensma, an AAV serotype 9 vector, and Spinraza. Through these examples of marketed gene therapies and gene cell therapies, we will discuss the expanding applications of such novel technologies to previously intractable rare diseases.


Assuntos
Agamaglobulinemia , Imunodeficiência Combinada Severa , Humanos , Doenças Raras/genética , Doenças Raras/terapia , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/terapia , Terapia Genética , Agamaglobulinemia/genética , Agamaglobulinemia/terapia
4.
Gene Ther ; 29(9): 498-512, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-34611322

RESUMO

Spinal muscular atrophy (SMA) is a severe childhood neuromuscular disease for which two genetic therapies, Nusinersen (Spinraza, an antisense oligonucleotide), and AVXS-101 (Zolgensma, an adeno-associated viral vector of serotype 9 AAV9), have recently been approved. We investigated the pre-clinical development of SMA genetic therapies in rodent models and whether this can predict clinical efficacy. We have performed a systematic review of relevant publications and extracted median survival and details of experimental design. A random effects meta-analysis was used to estimate and compare efficacy. We stratified by experimental design (type of genetic therapy, mouse model, route and time of administration) and sought any evidence of publication bias. 51 publications were identified containing 155 individual comparisons, comprising 2573 animals in total. Genetic therapies prolonged survival in SMA mouse models by 3.23-fold (95% CI 2.75-3.79) compared to controls. Study design characteristics accounted for significant heterogeneity between studies and greatly affected observed median survival ratios. Some evidence of publication bias was found. These data are consistent with the extended average lifespan of Spinraza- and Zolgensma-treated children in the clinic. Together, these results support that SMA has been particularly amenable to genetic therapy approaches and highlight SMA as a trailblazer for therapeutic development.


Assuntos
Atrofia Muscular Espinal , Roedores , Animais , Modelos Animais de Doenças , Terapia Genética , Camundongos , Atrofia Muscular Espinal/tratamento farmacológico , Atrofia Muscular Espinal/terapia , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/uso terapêutico , Resultado do Tratamento
5.
Gene Ther ; 27(10-11): 505-515, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-32313099

RESUMO

Spinal muscular atrophy (SMA) is a neuromuscular disease caused by loss of the survival motor neuron (SMN) gene. While there are currently two approved gene-based therapies for SMA, availability, high cost, and differences in patient response indicate that alternative treatment options are needed. Optimal therapeutic strategies will likely be a combination of SMN-dependent and -independent treatments aimed at alleviating symptoms in the central nervous system and peripheral muscles. Krüppel-like factor 15 (KLF15) is a transcription factor that regulates key metabolic and ergogenic pathways in muscle. We have recently reported significant downregulation of Klf15 in muscle of presymptomatic SMA mice. Importantly, perinatal upregulation of Klf15 via transgenic and pharmacological methods resulted in improved disease phenotypes in SMA mice, including weight and survival. In the current study, we designed an adeno-associated virus serotype 8 (AAV8) vector to overexpress a codon-optimized Klf15 cDNA under the muscle-specific Spc5-12 promoter (AAV8-Klf15). Administration of AAV8-Klf15 to severe Taiwanese Smn-/-;SMN2 or intermediate Smn2B/- SMA mice significantly increased Klf15 expression in muscle. We also observed significant activity of the AAV8-Klf15 vector in liver and heart. AAV8-mediated Klf15 overexpression moderately improved survival in the Smn2B/- model but not in the Taiwanese mice. An inability to specifically induce Klf15 expression at physiological levels in a time- and tissue-dependent manner may have contributed to this limited efficacy. Thus, our work demonstrates that an AAV8-Spc5-12 vector induces high gene expression as early as P2 in several tissues including muscle, heart, and liver, but highlights the challenges of achieving meaningful vector-mediated transgene expression of Klf15.


Assuntos
Dependovirus , Atrofia Muscular Espinal , Animais , Dependovirus/genética , Modelos Animais de Doenças , Humanos , Fatores de Transcrição Kruppel-Like/genética , Camundongos , Camundongos Transgênicos , Músculos , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/terapia , Sorogrupo , Proteína 1 de Sobrevivência do Neurônio Motor/genética
6.
Pacing Clin Electrophysiol ; 42(10): 1383-1389, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31482579

RESUMO

INTRODUCTION: Atrial fibrillation is often asymptomatic and un-diagnosed in the community resulting in an increased risk of heart failure and stroke to those patients. We evaluated the effectiveness, tolerability, and accuracy of a novel six-channel electrocardiogram digital-health screening device, the RhythmPad, for the detection of atrial fibrillation. METHODS: Seven hundred and fifty-two participants attending the cardiology department were recruited. Two recordings were taken-a six-lead electrocardiogram using the RhythmPad device and a standard 12-lead electrocardiogram. Recorded traces were analyzed by two blinded cardiologists. The computer-generated automated diagnostic reports from both systems were also compared. Post-participation feedback was obtained from study participants using a three-part questionnaire. RESULTS: The sensitivity of the six-lead electrocardiogram compared to the 12-lead electrocardiogram, analyzed by two blinded cardiologists, for the detection of normal sinus rhythm was 95.9%, with a specificity of 97.2%. The sensitivity for the detection of atrial fibrillation using the six-lead ECG was 93.4%, with specificity 96.8%. The six-lead automated diagnostic report had a sensitivity and specificity of 97.5% and 98.6%, respectively, for correctly diagnosing normal sinus rhythm. For the correct diagnosis of atrial fibrillation, the six-lead automated diagnostic report had a sensitivity and specificity of 95.4% and 98.8%, respectively. A total of 95.4% of participants found RhythmPad to be comfortable, with only 0.5% preferring the 12-lead ECG device in comparison to six-lead ECG acquisitions. CONCLUSION: The RhythmPad digital health device and its automated diagnostic report were highly accurate in detecting atrial fibrillation when compared to a standard 12-lead electrocardiogram.


Assuntos
Fibrilação Atrial/diagnóstico , Eletrocardiografia/instrumentação , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Automação , Diagnóstico Diferencial , Desenho de Equipamento , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Sensibilidade e Especificidade , Inquéritos e Questionários
8.
Mol Ther ; 24(3): 465-74, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26765770

RESUMO

Programmable nucleases allow defined alterations in the genome with ease-of-use, efficiency, and specificity. Their availability has led to accurate and widespread genome engineering, with multiple applications in basic research, biotechnology, and therapy. With regard to human gene therapy, nuclease-based gene editing has facilitated development of a broad range of therapeutic strategies based on both nonhomologous end joining and homology-dependent repair. This review discusses current progress in nuclease-based therapeutic applications for a subset of inherited monogenic diseases including cystic fibrosis, Duchenne muscular dystrophy, diseases of the bone marrow, and hemophilia and highlights associated challenges and future prospects.


Assuntos
Edição de Genes , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/terapia , Terapia Genética , Animais , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Edição de Genes/métodos , Marcação de Genes , Técnicas de Transferência de Genes , Terapia Genética/métodos , Humanos , Pesquisa Translacional Biomédica
9.
Mol Ther ; 23(2): 244-54, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25369767

RESUMO

Cerebral Dopamine Neurotrophic Factor (CDNF) and Mesencephalic Astrocyte-derived Neurotrophic factor (MANF) are members of a recently discovered family of neurotrophic factors (NTFs). Here, we used intranigral or intrastriatal lentiviral vector-mediated expression to evaluate their efficacy at protecting dopaminergic function in the 6-OHDA model of Parkinson's disease (PD). In contrast to the well-studied Glial-Derived Neurotrophic Factor (GDNF), no beneficial effects were demonstrated by striatal overexpression of either protein. Interestingly, nigral overexpression of CDNF decreased amphetamine-induced rotations and increased tyroxine hydroxylase (TH) striatal fiber density but had no effect on numbers of TH(+) cells in the SN. Nigral MANF overexpression had no effect on amphetamine-induced rotations or TH striatal fiber density but resulted in a significant preservation of TH(+) cells. Combined nigral overexpression of both factors led to a robust reduction in amphetamine-induced rotations, greater increase in striatal TH-fiber density and significant protection of TH(+) cells in the SN. We conclude that nigral CDNF and MANF delivery is more efficacious than striatal delivery. This is also the first study to demonstrate that combined NTF can have synergistic effects that result in enhanced neuroprotection, suggesting that multiple NTF delivery may be more efficacious for the treatment of PD than the single NTF approaches attempted so far.


Assuntos
Expressão Gênica , Fatores de Crescimento Neural/genética , Doença de Parkinson/genética , Substância Negra/metabolismo , Animais , Comportamento Animal , Linhagem Celular , Modelos Animais de Doenças , Ordem dos Genes , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Humanos , Imuno-Histoquímica , Lentivirus/genética , Fatores de Crescimento Neural/metabolismo , Neurônios/metabolismo , Oxidopamina/efeitos adversos , Doença de Parkinson/metabolismo , Doença de Parkinson/terapia , Ratos , Proteínas Recombinantes de Fusão , Substância Negra/patologia , Transdução Genética , Tirosina 3-Mono-Oxigenase/metabolismo
10.
J Neurosci ; 34(14): 4822-36, 2014 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-24695702

RESUMO

Chondroitin sulfate proteoglycans (CSPGs) inhibit repair following spinal cord injury. Here we use mammalian-compatible engineered chondroitinase ABC (ChABC) delivered via lentiviral vector (LV-ChABC) to explore the consequences of large-scale CSPG digestion for spinal cord repair. We demonstrate significantly reduced secondary injury pathology in adult rats following spinal contusion injury and LV-ChABC treatment, with reduced cavitation and enhanced preservation of spinal neurons and axons at 12 weeks postinjury, compared with control (LV-GFP)-treated animals. To understand these neuroprotective effects, we investigated early inflammatory changes following LV-ChABC treatment. Increased expression of the phagocytic macrophage marker CD68 at 3 d postinjury was followed by increased CD206 expression at 2 weeks, indicating that large-scale CSPG digestion can alter macrophage phenotype to favor alternatively activated M2 macrophages. Accordingly, ChABC treatment in vitro induced a significant increase in CD206 expression in unpolarized monocytes stimulated with conditioned medium from spinal-injured tissue explants. LV-ChABC also promoted the remodelling of specific CSPGs as well as enhanced vascularity, which was closely associated with CD206-positive macrophages. Neuroprotective effects of LV-ChABC corresponded with improved sensorimotor function, evident as early as 1 week postinjury, a time point when increased neuronal survival correlated with reduced apoptosis. Improved function was maintained into chronic injury stages, where improved axonal conduction and increased serotonergic innervation were also observed. Thus, we demonstrate that ChABC gene therapy can modulate secondary injury processes, with neuroprotective effects that lead to long-term improved functional outcome and reveal novel mechanistic evidence that modulation of macrophage phenotype may underlie these effects.


Assuntos
Condroitina ABC Liase/genética , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Terapia Genética/métodos , Macrófagos/fisiologia , Traumatismos da Medula Espinal/terapia , Animais , Células Cultivadas , Proteoglicanas de Sulfatos de Condroitina/administração & dosagem , Modelos Animais de Doenças , Estimulação Elétrica , Feminino , Regulação da Expressão Gênica/fisiologia , Injeções Espinhais , Proteínas do Tecido Nervoso/metabolismo , Condução Nervosa/efeitos dos fármacos , Condução Nervosa/fisiologia , Desempenho Psicomotor/fisiologia , Ratos , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia , Fatores de Tempo
11.
Nucleic Acids Res ; 40(13): 6367-79, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22467209

RESUMO

The ability to specifically engineer the genome of living cells at precise locations using rare-cutting designer endonucleases has broad implications for biotechnology and medicine, particularly for functional genomics, transgenics and gene therapy. However, the potential impact of chromosomal context and epigenetics on designer endonuclease-mediated genome editing is poorly understood. To address this question, we conducted a comprehensive analysis on the efficacy of 37 endonucleases derived from the quintessential I-CreI meganuclease that were specifically designed to cleave 39 different genomic targets. The analysis revealed that the efficiency of targeted mutagenesis at a given chromosomal locus is predictive of that of homologous gene targeting. Consequently, a strong genome-wide correlation was apparent between the efficiency of targeted mutagenesis (≤ 0.1% to ≈ 6%) with that of homologous gene targeting (≤ 0.1% to ≈ 15%). In contrast, the efficiency of targeted mutagenesis or homologous gene targeting at a given chromosomal locus does not correlate with the activity of individual endonucleases on transiently transfected substrates. Finally, we demonstrate that chromatin accessibility modulates the efficacy of rare-cutting endonucleases, accounting for strong position effects. Thus, chromosomal context and epigenetic mechanisms may play a major role in the efficiency rare-cutting endonuclease-induced genome engineering.


Assuntos
Efeitos da Posição Cromossômica , Enzimas de Restrição do DNA/metabolismo , Animais , Células CHO , Linhagem Celular , Cricetinae , Cricetulus , Enzimas de Restrição do DNA/química , Marcação de Genes , Engenharia Genética , Genoma Humano , Humanos , Mutagênese
12.
Hum Gene Ther ; 35(1-2): 5-8, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38062731

RESUMO

The year 2023 marks the 20th anniversary of the British Society for Gene and Cell Therapy (BSGCT). In these 20 years, the field of gene and cell therapy has gone from promising strategy to clinical reality. This report describes the history, objectives, organization, and activities of BSGCT to advance research and practice of gene and cell therapy in the United Kingdom.


Assuntos
Terapia Genética , Sociedades Médicas , Sociedades Médicas/história , Reino Unido , Aniversários e Eventos Especiais , Terapia Baseada em Transplante de Células e Tecidos
14.
PLoS Biol ; 8(6): e1000399, 2010 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-20585375

RESUMO

Following trauma of the adult brain or spinal cord the injured axons of central neurons fail to regenerate or if intact display only limited anatomical plasticity through sprouting. Adult cortical neurons forming the corticospinal tract (CST) normally have low levels of the neuronal calcium sensor-1 (NCS1) protein. In primary cultured adult cortical neurons, the lentivector-induced overexpression of NCS1 induces neurite sprouting associated with increased phospho-Akt levels. When the PI3K/Akt signalling pathway was pharmacologically inhibited the NCS1-induced neurite sprouting was abolished. The overexpression of NCS1 in uninjured corticospinal neurons exhibited axonal sprouting across the midline into the CST-denervated side of the spinal cord following unilateral pyramidotomy. Improved forelimb function was demonstrated behaviourally and electrophysiologically. In injured corticospinal neurons, overexpression of NCS1 induced axonal sprouting and regeneration and also neuroprotection. These findings demonstrate that increasing the levels of intracellular NCS1 in injured and uninjured central neurons enhances their intrinsic anatomical plasticity within the injured adult central nervous system.


Assuntos
Proteínas Sensoras de Cálcio Neuronal/genética , Plasticidade Neuronal/genética , Neuropeptídeos/genética , Traumatismos da Medula Espinal/fisiopatologia , Animais , Sequência de Bases , Western Blotting , Células Cultivadas , Primers do DNA , Ativação Enzimática , Vetores Genéticos , Imuno-Histoquímica , Lentivirus/genética , Masculino , Proteínas Sensoras de Cálcio Neuronal/metabolismo , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Proteínas Quinases/metabolismo , Ratos , Ratos Wistar
15.
Nat Med ; 12(3): 348-53, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16491086

RESUMO

Retroviral and lentiviral vector integration into host-cell chromosomes carries with it a finite chance of causing insertional mutagenesis. This risk has been highlighted by the induction of malignancy in mouse models, and development of lymphoproliferative disease in three individuals with severe combined immunodeficiency-X1 (refs. 2,3). Therefore, a key challenge for clinical therapies based on retroviral vectors is to achieve stable transgene expression while minimizing insertional mutagenesis. Recent in vitro studies have shown that integration-deficient lentiviral vectors can mediate stable transduction. With similar vectors, we now show efficient and sustained transgene expression in vivo in rodent ocular and brain tissues. We also show substantial rescue of clinically relevant rodent models of retinal degeneration. Therefore, the high efficiency of gene transfer and expression mediated by lentiviruses can be harnessed in vivo without a requirement for vector integration. For therapeutic application to postmitotic tissues, this system substantially reduces the risk of insertional mutagenesis.


Assuntos
Terapia Genética/métodos , Vetores Genéticos/genética , Lentivirus/genética , Animais , Encéfalo/citologia , Proteínas de Transporte , Eletrorretinografia , Proteínas do Olho/metabolismo , Feminino , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Camundongos , Epitélio Pigmentado Ocular/citologia , Ratos , Retina/citologia , Células Tumorais Cultivadas , Integração Viral/genética , cis-trans-Isomerases
16.
Biomedicines ; 11(10)2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37893074

RESUMO

The blood-brain barrier (BBB) is the specialised microvasculature system that shields the central nervous system (CNS) from potentially toxic agents. Attempts to develop therapeutic agents targeting the CNS have been hindered by the lack of predictive models of BBB crossing. In vitro models mimicking the human BBB are of great interest, and advances in induced pluripotent stem cell (iPSC) technologies and the availability of reproducible differentiation protocols have facilitated progress. In this study, we present the efficient differentiation of three different wild-type iPSC lines into brain microvascular endothelial cells (BMECs). Once differentiated, cells displayed several features of BMECs and exhibited significant barrier tightness as measured by trans-endothelial electrical resistance (TEER), ranging from 1500 to >6000 Ωcm2. To assess the functionality of our BBB models, we analysed the crossing efficiency of adeno-associated virus (AAV) vectors and peptide-conjugated antisense oligonucleotides, both currently used in genetic approaches for the treatment of rare diseases. We demonstrated superior barrier crossing by AAV serotype 9 compared to serotype 8, and no crossing by a cell-penetrating peptide-conjugated antisense oligonucleotide. In conclusion, our study shows that iPSC-based models of the human BBB display robust phenotypes and could be used to screen drugs for CNS penetration in culture.

17.
J Gene Med ; 14(5): 299-315, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22499506

RESUMO

BACKGROUND: Knocking down neuronal LINGO-1 using short hairpin RNAs (shRNAs) might enhance axon regeneration in the central nervous system (CNS). Integration-deficient lentiviral vectors have great potential as a therapeutic delivery system for CNS injuries. However, recent studies have revealed that shRNAs can induce an interferon response resulting in off-target effects and cytotoxicity. METHODS: CNS neurones were transduced with integration-deficient lentiviral vectors in vitro. The transcriptional effect of shRNA expression was analysed using quantitative real time-polymerase chain reaction and northern blots were used to assess shRNA production. RESULTS: Integration-deficient lentiviral vectors efficiently transduced CNS neurones and knocked down LINGO-1 mRNA in vitro. However, an increase in cell death was observed when lentiviral vectors encoding an shRNA were applied or when high vector concentrations were used. We demonstrate that high doses of vector or the use of vectors encoding shRNAs can induce an up-regulation of interferon-stimulated genes (2',5'-oligoadenylate synthase 1 and protein kinase R although not myxovirus resistance 1) and a down-regulation of off-target genes (including p75(NTR) and Nogo receptor 1). Furthermore, the northern blot demonstrated that these negative consequences occur even when lentiviral vectors express low levels of shRNAs. Taken together, these results may explain why neurite outgrowth was not enhanced on an inhibitory substrate following transduction with lentiviral vectors encoding an shRNA targeting LINGO-1. CONCLUSIONS: These findings highlight the importance of including appropriate controls to verify silencing specificity and the requirement to check for an interferon response when conducting RNA interference experiments. However, the potential benefits that RNA interference and viral vectors offer to gene-based therapies to CNS injuries cannot be overlooked and demand further investigation.


Assuntos
Sistema Nervoso Central , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neuritos/metabolismo , RNA Interferente Pequeno/genética , Regeneração/genética , Animais , Sistema Nervoso Central/crescimento & desenvolvimento , Sistema Nervoso Central/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Transferência de Genes/efeitos adversos , Vetores Genéticos , Células HEK293 , Células HeLa , Humanos , Interferons/metabolismo , Lentivirus , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/efeitos adversos , Ratos
18.
Mol Ther ; 19(4): 703-10, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21364536

RESUMO

Lentiviral vectors with self-inactivating (SIN) long terminal repeats (LTRs) are promising for safe and sustained transgene expression in dividing as well as quiescent cells. As genome organization and transcription substantially differs between actively dividing and postmitotic cells in vivo, we hypothesized that genomic vector integration preferences might be distinct between these biological states. We performed integration site (IS) analyses on mouse dividing cells (fibroblasts and hematopoietic progenitor cells (HPCs)) transduced ex vivo and postmitotic cells (eye and brain) transduced in vivo. As expected, integration in dividing cells occurred preferably into gene coding regions. In contrast, postmitotic cells showed a close to random frequency of integration into genes and gene spare long interspersed nuclear elements (LINE). Our studies on the potential mechanisms responsible for the detected differences of lentiviral integration suggest that the lowered expression level of Psip1 reduce the integration frequency in vivo into gene coding regions in postmitotic cells. The motif TGGAA might represent one of the factors for preferred lentiviral integration into mouse and rat Satellite DNA. These observations are highly relevant for the correct assessment of preclinical biosafety studies, indicating that lentiviral vectors are well suited for safe and effective clinical gene transfer into postmitotic tissues.


Assuntos
Vetores Genéticos/genética , Lentivirus/genética , Mitose/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Linhagem Celular , DNA Satélite/genética , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Reação em Cadeia da Polimerase , Ratos , Sequências Repetidas Terminais/genética , Fatores de Transcrição/genética , Integração Viral/genética
19.
Mol Ther ; 17(8): 1316-32, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19491821

RESUMO

Lentiviral vectors are very efficient at transducing dividing and quiescent cells, which makes them highly useful tools for genetic analysis and gene therapy. Traditionally this efficiency was considered dependent on provirus integration in the host cell genome; however, recent results have challenged this view. So called integration-deficient lentiviral vectors (IDLVs) can be produced through the use of integrase mutations that specifically prevent proviral integration, resulting in the generation of increased levels of circular vector episomes in transduced cells. These lentiviral episomes lack replication signals and are gradually lost by dilution in dividing cells, but are stable in quiescent cells. Compared to integrating lentivectors, IDLVs have a greatly reduced risk of causing insertional mutagenesis and a lower risk of generating replication-competent recombinants (RCRs). IDLVs can mediate transient gene expression in proliferating cells, stable expression in nondividing cells in vitro and in vivo, specific immune responses, RNA interference, homologous recombination (gene repair, knock-in, and knock-out), site-specific recombination, and transposition. IDLVs can be converted into replicating episomes, suggesting that if a clinically applicable system can be developed they would also become highly appropriate for stable transduction of proliferating tissues in therapeutic applications.


Assuntos
Vetores Genéticos/genética , Lentivirus/genética , Transdução Genética/métodos , Animais , Humanos , Integrases/genética , Mutação
20.
Mol Cell Neurosci ; 38(4): 526-36, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18562209

RESUMO

The subventricular zone (SVZ) is a major site of neurogenesis in the adult. We now show that ependymal and proliferating cells in the adult mouse SVZ express diacylglycerol lipases (DAGLs), enzymes that synthesise a CB1/CB2 cannabinoid receptor ligand. DAGL and CB2 antagonists inhibit the proliferation of cultured neural stem cells, and the proliferation of progenitor cells in young animals. Furthermore, CB2 agonists stimulate progenitor cell proliferation in vivo, with this effect being more pronounced in older animals. A similar response was seen with a fatty acid amide hydrolase (FAAH) inhibitor that limits degradation of endocannabinoids. The effects on proliferation were mirrored in changes in the number of neuroblasts migrating from the SVZ to the olfactory bulb (OB). In this context, CB2 antagonists reduced the number of newborn neurons appearing in the OB in the young adult animals while CB2 agonists stimulated this in older animals. These data identify CB2 receptor agonists and FAAH inhibitors as agents that can counteract the naturally observed decline in adult neurogenesis that is associated with ageing.


Assuntos
Envelhecimento/fisiologia , Diferenciação Celular/fisiologia , Ventrículos Cerebrais/crescimento & desenvolvimento , Lipase Lipoproteica/fisiologia , Receptor CB2 de Canabinoide/fisiologia , Transdução de Sinais/fisiologia , Fatores Etários , Animais , Linhagem Celular , Células Cultivadas , Ventrículos Cerebrais/citologia , Ventrículos Cerebrais/enzimologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/citologia , Neurônios/enzimologia , Neurônios/fisiologia , Células-Tronco/citologia , Células-Tronco/enzimologia , Células-Tronco/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa