Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Oral Maxillofac Surg ; 75(9): 1932-1940, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28599123

RESUMO

PURPOSE: Intraoperative imaging is gaining widespread use in the management of facial fracture repair. The aim of this study was to determine whether intraoperative imaging changes the management of orbital fracture repair. MATERIALS AND METHODS: A retrospective case series was performed of all cases of orbital fracture repair from 2008 to 2015 in which the intraoperative O-arm was used at Regions Hospital (St Paul, MN), a level I trauma center. The primary outcome variable was a change in management, ranging from orbital plate repositioning to proceeding with orbital floor exploration. RESULTS: The study sample was composed of 101 patients with a mean age of 40 ± 15 years. Approximately 75% (76 of 101) of patients were male and 25% (25 of 101) were female. All cases were secondary to assault, motor vehicle accident, fall, or gunshot wounds. Use of the O-arm resulted in a change in management in 44% (44 of 101) of cases. In 48% (21 of 44) of these cases in which intraoperative imaging resulted in a change in management, the orbital plate was repositioned to optimize repair. In 16% (7 of 44) of these cases, the orbital plate was exchanged for a different size or type of plate. In 7% (3 of 44) of these cases, the orbital plate was reshaped by bending to improve contour for the repair. In another 7% (3 of 44) of these cases, the orbital plate was reshaped by trimming the plate to optimize the length or width of the plate for repair. In 7% of these cases, the orbital floor required exploration based on intraoperative imaging. In 5% of these cases, the orbital floor was found to be adequately reduced after zygoma reduction based on intraoperative imaging and did not require exploration. CONCLUSIONS: Use of intraoperative imaging allows the surgeon to make real-time changes in operative management ranging from orbital plate repositioning to deciding whether to proceed with orbital floor exploration. This not only allows for immediate optimization of repair but also could decrease the need for revision procedures, thus decreasing patient morbidity and improving patient outcomes.


Assuntos
Fixação Interna de Fraturas/métodos , Imageamento Tridimensional , Fraturas Orbitárias/diagnóstico por imagem , Fraturas Orbitárias/cirurgia , Tomografia Computadorizada por Raios X , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Feminino , Humanos , Cuidados Intraoperatórios , Masculino , Pessoa de Meia-Idade , Fraturas Orbitárias/etiologia , Estudos Retrospectivos , Centros de Traumatologia , Resultado do Tratamento
2.
Med Phys ; 39(7): 4115-22, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22830744

RESUMO

PURPOSE: To investigate a measurement method for evaluating the resolution properties of CT imaging systems across reconstruction algorithms, dose, and contrast. METHODS: An algorithm was developed to extract the task-based modulation transfer function (MTF) from disk images generated from the rod inserts in the ACR phantom (model 464 Gammex, WI). These inserts are conventionally employed for HU accuracy assessment. The edge of the disk objects was analyzed to determine the edge-spread function, which was differentiated to yield the line-spread function and Fourier-transformed to generate the object-specific MTF for task-based assessment, denoted MTF(Task). The proposed MTF measurement method was validated against the conventional wire technique and further applied to measure the MTF of CT images reconstructed with an adaptive statistical iterative algorithm (ASIR) and a model-based iterative (MBIR) algorithm. Results were further compared to the standard filtered back projection (FBP) algorithm. Measurements were performed and compared across different doses and contrast levels to ascertain the MTF(Task) dependencies on those factors. RESULTS: For the FBP reconstructed images, the MTF(Task) measured with the inserts were the same as the MTF measured from the wire-based method. For the ASIR and MBIR data, the MTF(Task) using the high contrast insert was similar to the wire-based MTF and equal or superior to that of FBP. However, results for the MTF(Task) measured using the low-contrast inserts, the MTF(Task) for ASIR and MBIR data was lower than for the FBP, which was constant throughout all measurements. Similarly, as a function of mA, the MTF(Task) for ASIR and MBIR varied as a function of noise--with MTF(Task) being proportional to mA. Overall greater variability of MTF(Task) across dose and contrast was observed for MBIR than for ASIR. CONCLUSIONS: This approach provides a method for assessing the task-based MTF of a CT system using conventional and iterative reconstructions. Results demonstrated that the object-specific MTF can vary as a function of dose and contrast. The analysis highlighted the paradigm shift for iterative reconstructions when compared to FBP, where iterative reconstructions generally offer superior noise performance but with varying resolution as a function of dose and contrast. The MTF(Task) generated by this method is expected to provide a more comprehensive assessment of image resolution across different reconstruction algorithms and imaging tasks.


Assuntos
Algoritmos , Intensificação de Imagem Radiográfica/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Humanos , Imagens de Fantasmas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Tomografia Computadorizada por Raios X/instrumentação
3.
Med Phys ; 38(5): 2595-601, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21776796

RESUMO

PURPOSE: Recently, a fast-kVp switching (FKS) dual-energy method has been presented with clinical and phantom results to demonstrate its efficacy. Patient dose concern has been raised on FKS dual-energy since it involves higher energy acquisition at 140 kVp and slower gantry rotation time (e.g., 0.9-1 s) as opposed to 0.5 s as used in routine single-energy exams. The purpose of our study was to quantitatively compare the CTDI(VOL) of FKS and routine CT exams under the body and head conditions. METHODS: For a fair comparison, we have to overcome the difficulty of unmatched protocols between FKS and routine CT exams. In this paper, we propose to match the low contrast detectability (LCD), a critical image quality metric impacting diagnostic quality, before measuring CTDI(VOL). The kVp pair, flux ratio, and optimal monochromatic energy have been carefully optimized for FKS protocols prior to the comparison. Our baseline single-energy protocols were per IEC-61223-3-5 under head and body conditions except for mA, which was iteratively adjusted to match the LCD of FKS. CTDI(VOL) was measured using either a 16 cm (for head scanning) or a 32 cm (for body scanning) PMMA phantom of at least 14 cm in length. The LCD was measured using the uniform section of Catphan 600. To make the study repeatable, the automated statistical LCD measurement tool available on GE Discovery CT750 scanner was used in this work. A visual LCD phantom and a Gammex tissue characterization phantom were also employed to verify the statistical LCD measurements and to introduce various patient sizes and contrast levels. RESULTS: The mean CTDI(VOL) for the head and body single-energy acquisitions was 57.5 and 29.2 mGy, respectively. The LCD was measured at 0.45% and 0.42%, respectively. The average CTDI(VOL) for FKS head and body scans was 70.4 and 33.4 mGy, respectively. The corresponding LCD was measured at 0.45% and 0.43%, respectively. The results from the visual LCD phantom and Gammex phantom supported the statistical LCD measurements. CONCLUSIONS: For equal image quality as measured by low contrast detectability, the CTDI(VOL) of a FKS head and body exam is roughly 22% and 14% higher than that of a routine single-energy head and body exam, respectively, for the phantom measured.


Assuntos
Doses de Radiação , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Imagem Corporal Total/métodos , Contagem Corporal Total/métodos , Humanos , Imagens de Fantasmas , Proteção Radiológica/métodos , Intensificação de Imagem Radiográfica/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Tomografia Computadorizada por Raios X/instrumentação
4.
Proc SPIE Int Soc Opt Eng ; 6913: 69130U, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18836567

RESUMO

The objective performance evaluation metrics, termed Generalized Modulation Transfer Function (GMTF), Generalized Noise Power Spectrum (GNPS), Generalized Noise Equivalent Quanta (GNEQ), and Generalized Detective Quantum Efficiency (GDQE), have been developed to assess total imaging-system performance by including the effects of geometric unsharpness due to the finite size of the focal spot and scattered radiation in addition to the detector properties. These metrics were used to evaluate the performance of the HSMAF, a custom-built, high-resolution, real-time-acquisition detector with 35-mum pixels, in simulated neurovascular angiographic conditions using a uniform head-equivalent phantom. The HSMAF consists of a 300-mum-thick CsI(Tl) scintillator coupled to a 4 cm diameter, variable-gain, Gen2 light image intensifier with dual-stage microchannel plate, followed by direct fiber-optic coupling to a 30-fps CCD camera, and is capable of both fluoroscopy and angiography. Effects of focal-spot size, geometric magnification, irradiation field-of-view, and air-gap between the phantom and the detector were evaluated. The resulting plots of GMTF and GDQE showed that geometric blurring is the more dominant image degradation factor at high spatial frequencies, whereas scatter dominates at low spatial frequencies. For the standard image-geometry and scatter conditions used here, the HSMAF maintains substantial system imaging capabilities (GDQE>5%) at frequencies above 4 cycles/mm where conventional detectors cannot operate. The loss in image SNR due to scatter or focal-spot unsharpness could be compensated by increasing the exposure by a factor of 2 to 3. This generalized evaluation method may be used to more realistically evaluate and compare total system performance leading to improved system designs.

5.
Proc SPIE Int Soc Opt Eng ; 6913: 69130K, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18836568

RESUMO

The solid-state x-ray image intensifier (SSXII) is an EMCCD-based x-ray detector designed to satisfy an increasing need for high-resolution real-time images, while offering significant improvements over current flat panel detectors (FPDs) and x-ray image intensifiers (XIIs). FPDs are replacing XIIs because they reduce/eliminate veiling glare, pincushion or s-shaped distortions and are physically flat. However, FPDs suffer from excessive lag and ghosting and their performance has been disappointing for low-exposure-per-frame procedures due to excessive instrumentation-noise. XIIs and FPDs both have limited resolution capabilities of ~3 cycles/mm. To overcome these limitations a prototype SSXII module has been developed, consisting of a 1k x 1k, 8 mum pixel EMCCD with a fiber-optic input window, which views a 350 mum thick CsI(Tl) phosphor via a 4:1 magnifying fiber-optic-taper (FOT). Arrays of such modules will provide a larger field-of-view. Detector MTF, DQE, and instrumentation-noise equivalent exposure (INEE) were measured to evaluate the SSXIIs performance using a standard x-ray spectrum (IEC RQA5), allowing for comparison with current state-of-the-art detectors. The MTF was 0.20 at 3 cycles/mm, comparable to standard detectors, and better than 0.05 up to 7 cycles/mm, well beyond current capabilities. DQE curves indicate no degradation from high-angiographic to low-fluoroscopic exposures (< 2% deviation in overall DQE from 1.3 mR to 2.7 muR), demonstrating negligible instrumentation-noise, even with low input signal intensities. An INEE of < 0.2 muR was measured for the highest-resolution mode (32 mum effective pixel size). Comparison images between detector technologies qualitatively demonstrate these improved imaging capabilities provided by the SSXII.

6.
Proc SPIE Int Soc Opt Eng ; 6510(1): 65101C, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-21654934

RESUMO

A new high-resolution, high-sensitivity, low-noise x-ray detector based on EMCCDs has been developed. The EMCCD detector module consists of a 1kx1k, 8µm pixel EMCCD camera coupled to a CsI(Tl) scintillating phosphor via a fiber optic taper (FOT). Multiple modules can be used to provide the desired field-of-view (FOV). The detector is capable of acquisitions over 30fps. The EMCCD's variable gain of up to 2000x for the pixel signal enables high sensitivity for fluoroscopic applications. With a 3:1 FOT, the detector can operate with a 144µm effective pixel size, comparable to current flat-panel detectors. Higher resolutions of 96 and 48µm pixel size can also be achieved with various binning modes. The detector MTFs and DQEs were calculated using a linear-systems analysis. The zero frequency DQE was calculated to be 59% at 74 kVp. The DQE for the 144µm pixel size was shown to exhibit quantum-noise limited behavior down to ~0.1µR using a conservative 30x gain. At this low exposure, gains above 30x showed limited improvements in DQE suggesting such increased gains may not be necessary. For operation down to 48µm pixel sizes, the detector instrumentation noise equivalent exposure (INEE), defined as the exposure where the instrumentation noise equals the quantum-noise, was <0.1µR for a 20x gain. This new technology may provide improvements over current flat-panel detectors for applications such as fluoroscopy and angiography requiring high frame rates, resolution, dynamic range and sensitivity while maintaining essentially no lag and very low INEE. Initial images from a prototype detector are also presented.

7.
Proc SPIE Int Soc Opt Eng ; 6142(61421R)2006 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-21297904

RESUMO

New cone-beam computed tomographic (CBCT) mammography system designs are presented where the detectors provide high spatial resolution, high sensitivity, low noise, wide dynamic range, negligible lag and high frame rates similar to features required for high performance fluoroscopy detectors. The x-ray detectors consist of a phosphor coupled by a fiber-optic taper to either a high gain image light amplifier (LA) then CCD camera or to an electron multiplying CCD. When a square-array of such detectors is used, a field-of-view (FOV) to 20 × 20 cm can be obtained where the images have pixel-resolution of 100 µm or better. To achieve practical CBCT mammography scan-times, 30 fps may be acquired with quantum limited (noise free) performance below 0.2 µR detector exposure per frame. Because of the flexible voltage controlled gain of the LA's and EMCCDs, large detector dynamic range is also achievable. Features of such detector systems with arrays of either generation 2 (Gen 2) or 3 (Gen 3) LAs optically coupled to CCD cameras or arrays of EMCCDs coupled directly are compared. Quantum accounting analysis is done for a variety of such designs where either the lowest number of information carriers off the LA photo-cathode or electrons released in the EMCCDs per x-ray absorbed in the phosphor are large enough to imply no quantum sink for the design. These new LA- or EMCCD-based systems could lead to vastly improved CBCT mammography, ROI-CT, or fluoroscopy performance compared to systems using flat panels.

8.
Proc SPIE Int Soc Opt Eng ; 5745(1): 419-429, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-21311726

RESUMO

Standard objective parameters such as MTF, NPS, NEQ and DQE do not reflect complete system performance, because they do not account for geometric unsharpness due to finite focal spot size and scatter due to the patient. The inclusion of these factors led to the generalization of the objective quantities, termed GMTF, GNNPS, GNEQ and GDQE defined at the object plane. In this study, a commercial x-ray image intensifier (II) is evaluated under this generalized approach and compared with a high-resolution, ROI microangiographic system previously developed and evaluated by our group. The study was performed using clinically relevant spectra and simulated conditions for neurovascular angiography specific for each system. A head-equivalent phantom was used, and images were acquired from 60 to 100 kVp. A source to image distance of 100 cm (75 cm for the microangiographic system) and a focal spot of 0.6 mm were used. Effects of varying the irradiation field-size, the air-gaps, and the magnifications (1.1 to 1.3) were compared. A detailed comparison of all of the generalized parameters is presented for the two systems. The detector MTF for the microangiographic system is in general better than that for the II system. For the total x-ray imaging system, the GMTF and GDQE for the II are better at low spatial frequencies, whereas the microangiographic system performs substantially better at higher spatial frequencies. This generalized approach can be used to more realistically evaluate and compare total system performance leading to improved system designs tailored to the imaging task.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa