Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Environ Sci Technol ; 58(32): 14098-14109, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39087390

RESUMO

The widespread use of bisphenol A (BPA) in polycarbonate plastics and epoxy resins has made it a prevalent environmental pollutant in aquatic ecosystems. BPA poses a significant threat to marine and freshwater wildlife due to its documented endocrine-disrupting effects on various species. Manufacturers are increasingly turning to other bisphenol compounds as supposedly safer alternatives. In this study, we employed in vitro reporter gene assays and ex vivo precision-cut liver slices from Atlantic cod (Gadus morhua) to investigate whether BPA and 11 BPA analogs exhibit estrogenic, antiestrogenic, androgenic, or antiandrogenic effects by influencing estrogen or androgen receptor signaling pathways. Most bisphenols, including BPA, displayed estrogenic properties by activating the Atlantic cod estrogen receptor alpha (gmEra). BPB, BPE, and BPF exhibited efficacy similar to or higher than that of BPA, with BPB and BPAF being more potent agonists. Additionally, some bisphenols, like BPG, induced estrogenic effects in ex vivo liver slices despite not activating gmEra in vitro, suggesting structural modifications by hepatic biotransformation enzymes. While only BPC2 and BPAF activated the Atlantic cod androgen receptor alpha (gmAra), several bisphenols exhibited antiandrogenic effects by inhibiting gmAra activity. This study underscores the endocrine-disrupting impact of bisphenols on aquatic organisms, emphasizing that substitutes for BPA may pose equal or greater risks to both the environment and human health.


Assuntos
Compostos Benzidrílicos , Gadus morhua , Fenóis , Receptores Androgênicos , Animais , Gadus morhua/metabolismo , Receptores Androgênicos/metabolismo , Fenóis/toxicidade , Receptores de Estrogênio/metabolismo , Poluentes Químicos da Água/toxicidade , Disruptores Endócrinos/toxicidade
2.
J Toxicol Environ Health A ; : 1-24, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37395093

RESUMO

Fish early life stages are well known for their sensitivity to crude oil exposure. However, the effect of crude oil exposure on adults and their gametes during their spawning period is not well studied. Polar cod, a key arctic fish, may be at risk for crude oil exposure during this potentially sensitive life stage. Additionally, this species experiences lower food availability during their spawning season, with unknown combined consequences. In the present study, wild-caught polar cod were exposed to decreasing levels of a water-soluble fraction (WSF) of crude oil or control conditions and fed either at a low or high feed ration to assess the combined effect of both stressors. Samples were taken during late gonadal development, during active spawning (spawning window), and in the post-spawning period. Histology analysis of gonads from fish sampled during the spawning window showed that oil-exposed polar cod were more likely to have spawned compared to controls. Oil-exposed females had 947 differentially regulated hepatic genes, and their eggs had a higher polycyclic aromatic hydrocarbon body burden compared to controls. Feed ration did not consistently affect polar cod's response to oil exposure for the endpoints measured, however, did alone result in decreases in some sperm motility parameters. These results suggest that polar cod's spawning period is a sensitive life event to crude oil exposure, while feed limitation may play a minor role for this supposedly capital breeder. The effects of adult exposure to crude oil on gamete quality and the next generation warrant further investigation.

3.
J Appl Toxicol ; 43(12): 1859-1871, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37528559

RESUMO

In the North Sea and North Atlantic coastal areas, fish experience relatively high background levels of persistent organic pollutants. This study aimed to compare the mode of action of environmentally relevant concentrations of mixtures of halogenated compounds in Atlantic cod. Juvenile male cod with mean weight of 840 g were exposed by gavage to dietary mixtures of chlorinated (PCBs, DDT analogs, chlordane, lindane, and toxaphene), brominated (PBDEs), and fluorinated (PFOS) compounds for 4 weeks. One group received a combined mixture of all three compound groups. The results showed that the accumulated levels of chemicals in cod liver after 4 weeks of exposure reflected concentrations found in wild fish in this region. Pathway analysis revealed that the treatment effects by each of the three groups of chemicals (chlorinated, brominated, and fluorinated) converged on activation of the unfolded protein response (UPR). Upstream regulator analysis predicted that almost all the key transcription factors (XBP1, ERN1, ATF4, EIF2AK3, and NFE2L2) regulating the UPR were significantly activated. No additive effect was observed in cod co-treated with all three compound groups. In conclusion, the genome-wide transcriptomic study suggests that the UPR pathway is a sensitive common target of halogenated organic environmental pollutants in fish.


Assuntos
Poluentes Ambientais , Gadus morhua , Bifenilos Policlorados , Poluentes Químicos da Água , Animais , Masculino , Gadus morhua/metabolismo , Poluentes Orgânicos Persistentes/metabolismo , Poluentes Orgânicos Persistentes/farmacologia , Fígado , Bifenilos Policlorados/análise , Poluentes Ambientais/análise , Poluentes Químicos da Água/análise
4.
Environ Sci Technol ; 54(2): 1033-1044, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31852180

RESUMO

The aryl hydrocarbon receptor (Ahr) is a ligand-activated transcription factor that mediates the toxicity of halogenated and polycyclic aromatic hydrocarbons in vertebrates. Atlantic cod (Gadus morhua) has recently emerged as a model organism in environmental toxicology studies, and increased knowledge of Ahr-mediated responses to xenobiotics is imperative. Genome mining and phylogenetic analyses revealed two Ahr-encoding genes in the Atlantic cod genome, gmahr1a and gmahr2a. In vitro binding assays showed that both gmAhr proteins bind to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), but stronger binding to gmAhr1a was observed. Transactivation studies with a reporter gene assay revealed that gmAhr1a is one order of magnitude more sensitive to TCDD than gmAhr2a, but the maximal responses of the receptors were similar. Other well-known Ahr agonists, such as ß-naphthoflavone (BNF), 3,3',4,4',5-pentachlorobiphenyl (PCB126), and 6-formylindolo[3,2-b]carbazole (FICZ), also activated the gmAhr proteins, but gmAhr1a was, in general, the more sensitive receptor and produced the highest efficacies. The induction of cyp1a in exposed precision-cut cod liver slices confirmed the activation of the Ahr signaling pathway ex vivo. In conclusion, the differences in transcriptional activation by gmAhr's with various agonists, the distinct binding properties with TCDD and BNF, and the distinct tissue-specific expression profiles indicate different functional specializations of the Atlantic cod Ahr's.


Assuntos
Gadus morhua , Dibenzodioxinas Policloradas , Hidrocarbonetos Policíclicos Aromáticos , Animais , Filogenia , Receptores de Hidrocarboneto Arílico
5.
Environ Res ; 189: 109906, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32980003

RESUMO

In the present study, a previously capped waste disposal site at Kollevåg (Norway) was selected to study the effects of contaminant leakage on biomarkers associated with Atlantic cod (Gadus morhua) reproductive endocrinology and development. Immature cod were caged for 6 weeks at 3 locations, selected to achieve a spatial gradient of contamination, and compared to a reference station. Quantitative transcriptomic, and lipidomic analysis was used to evaluate the effects of the potential complex contaminant mixture on ovarian developmental and endocrine physiology. The number of expressed transcripts, with 0.75 log2-fold differential expression or more, varied among stations and paralleled the severity of contamination. Particularly, significant bioaccumulation of ∑PCB-7, ∑DDTs and ∑PBDEs were observed at station 1, compared to the other station, including the reference station. Respectively 1416, 698 and 719 differentially expressed genes (DEGs), were observed at stations 1, 2 and 3, compared to the reference station, with transcripts belonging to steroid hormone synthesis pathway being significantly upregulation. Transcription factors such as esr2 and ahr2 were increased at all three stations, with highest fold-change at Station 1. MetaCore pathway maps identified affected pathways that are involved in ovarian physiology, where some unique pathways were significantly affected at each station. For the lipidomics, sphingolipid metabolism was particularly affected at station 1, and these effects paralleled the high contaminant burden at this station. Overall, our findings showed a novel and direct association between contaminant burden and ovarian toxicological and endocrine physiological responses in cod caged at the capped Kollevåg waste disposal site.


Assuntos
Gadus morhua , Animais , Gadus morhua/genética , Lipidômica , Noruega , Transcriptoma , Instalações de Eliminação de Resíduos
6.
Environ Sci Technol ; 53(12): 7036-7044, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31090407

RESUMO

The dopaminergic effect of PAH and PFAS mixtures, prepared according to environmentally relevant concentrations, has been studied in juvenile female Atlantic cod ( Gadus morhua). Benzo[a]pyrene, dibenzothiophene, fluorene, naphthalene, phenanthrene, and pyrene were used to prepare a PAH mixture, while PFNA, PFOA, PFOS, and PFTrA were used to prepare a PFAS mixture. Cod were injected intraperitoneally twice, with either a low (1×) or high (20×) dose of each compound mixture or their combinations. After 2 weeks of exposure, levels of plasma 17ß-estradiol (E2) were significantly elevated in high PAH/high PFAS treated group. Brain dopamine/metabolite ratios (DOPAC/dopamine and HVA+DOPAC/dopamine) changed with E2 plasma levels, except for high PAH/low PFAS and low PAH/high PFAS treated groups. On the transcript levels, th mRNA inversely correlated with dopamine/metabolite ratios and gnrh2 mRNA levels. Respective decreases and increases of drd1 and drd2a after exposure to the high PAH dose were observed. Specifically, high PFAS exposure decreased both drds, leading to high plasma E2 concentrations. Other studied end points suggest that these compounds, at different doses and combinations, have different toxicity threshold and modes of action. These effects indicate potential alterations in the feedback signaling processes within the dopaminergic pathway by these contaminant mixtures.


Assuntos
Fluorocarbonos , Gadus morhua , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Dopamina , Feminino , Homeostase
7.
BMC Genomics ; 17: 554, 2016 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-27496535

RESUMO

BACKGROUND: Methylmecury (MeHg) is a widely distributed environmental pollutant with considerable risk to both human health and wildlife. To gain better insight into the underlying mechanisms of MeHg-mediated toxicity, we have used label-free quantitative mass spectrometry to analyze the liver proteome of Atlantic cod (Gadus morhua) exposed in vivo to MeHg (0, 0.5, 2 mg/kg body weight) for 2 weeks. RESULTS: Out of a toltal of 1143 proteins quantified, 125 proteins were differentially regulated between MeHg-treated samples and controls. Using various bioinformatics tools, we performed gene ontology, pathway and network enrichment analysis, which indicated that proteins and pathways mainly related to energy metabolism, antioxidant defense, cytoskeleton remodeling, and protein synthesis were regulated in the hepatic proteome after MeHg exposure. Comparison with previous gene expression data strengthened these results, and further supported that MeHg predominantly affects many energy metabolism pathways, presumably through its strong induction of oxidative stress. Some enzymes known to have functionally important oxidation-sensitive cysteine residues in other animals are among the differentially regulated proteins, suggesting their modulations by MeHg-induced oxidative stress. Integrated analysis of the proteomics dataset combined with previous gene expression dataset showed a more pronounced effect of MeHg on amino acid, glucose and fatty acid metabolic pathways, and suggested possible interactions of the cellular energy metabolism and antioxidant defense pathways. CONCLUSIONS: MeHg disrupts mainly redox homeostasis and energy generating metabolic pathways in cod liver. The energy pathways appear to be modulated through MeHg-induced oxidative stress, possibly mediated by oxidation sensitive enzymes.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Gadus morhua/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Compostos de Metilmercúrio/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Proteoma , Proteômica , Animais , Biomarcadores , Biologia Computacional/métodos , Gadus morhua/genética , Perfilação da Expressão Gênica/métodos , Ontologia Genética , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Proteômica/métodos
8.
BMC Genomics ; 15: 481, 2014 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-24939016

RESUMO

BACKGROUND: Polychlorinated biphenyls (PCBs) are persistent organic pollutants (POPs) with harmful effects in animals and humans. Although PCB 153 is one of the most abundant among PCBs detected in animal tissues, its mechanism of toxicity is not well understood. Only few studies have been conducted to explore genes and pathways affected by PCB 153 by using high throughput transcriptomics approaches. To obtain better insights into toxicity mechanisms, we treated juvenile Atlantic cod (Gadus morhua) with PCB 153 (0.5, 2 and 8 mg/kg body weight) for 2 weeks and performed gene expression analysis in the liver using oligonucleotide arrays. RESULTS: Whole-genome gene expression analysis detected about 160 differentially regulated genes. Functional enrichment, interactome, network and gene set enrichment analysis of the differentially regulated genes suggested that pathways associated with cell cycle, lipid metabolism, immune response, apoptosis and stress response were among the top significantly enriched. Particularly, genes coding for proteins in DNA replication/cell cycle pathways and enzymes of lipid biosynthesis were up-regulated suggesting increased cell proliferation and lipogenesis, respectively. CONCLUSIONS: PCB 153 appears to activate cell proliferation and lipogenic genes in cod liver. Transcriptional up-regulation of marker genes for lipid biosynthesis resembles lipogenic effects previously reported for persistent organic pollutants (POPs) and other environmental chemicals. Our results provide new insights into mechanisms of PCB 153 induced toxicity.


Assuntos
Ciclo Celular/efeitos dos fármacos , Gadus morhua/genética , Gadus morhua/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Bifenilos Policlorados/farmacologia , Transcriptoma , Animais , Análise por Conglomerados , Biologia Computacional , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Anotação de Sequência Molecular , Transdução de Sinais
9.
Front Physiol ; 14: 1129089, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37035678

RESUMO

Lipid metabolism is essential in maintaining energy homeostasis in multicellular organisms. In vertebrates, the peroxisome proliferator-activated receptors (PPARs, NR1C) regulate the expression of many genes involved in these processes. Atlantic cod (Gadus morhua) is an important fish species in the North Atlantic ecosystem and in human nutrition, with a highly fatty liver. Here we study the involvement of Atlantic cod Ppar a and b subtypes in systemic regulation of lipid metabolism using two model agonists after in vivo exposure. WY-14,643, a specific PPARA ligand in mammals, activated cod Ppara1 and Ppara2 in vitro. In vivo, WY-14,643 caused a shift in lipid transport both at transcriptional and translational level in cod. However, WY-14,643 induced fewer genes in the fatty acid beta-oxidation pathway compared to that observed in rodents. Although GW501516 serves as a specific PPARB/D ligand in mammals, this compound activated cod Ppara1 and Ppara2 as well as Pparb in vitro. In vivo, it further induced transcription of Ppar target genes and caused changes in lipid composition of liver and plasma. The integrative approach provide a foundation for understanding how Ppars are engaged in regulating lipid metabolism in Atlantic cod physiology. We have shown that WY-14,643 and GW501516 activate Atlantic cod Ppara and Pparb, affect genes in lipid metabolism pathways, and induce changes in the lipid composition in plasma and liver microsomal membranes. Particularly, the combined transcriptomic, proteomics and lipidomics analyses revealed that effects of WY-14,643 on lipid metabolism are similar to what is known in mammalian studies, suggesting conservation of Ppara functions in mediating lipid metabolic processes in fish. The alterations in the lipid profiles observed after Ppar agonist exposure suggest that other chemicals with similar Ppar receptor affinities may cause disturbances in the lipid regulation of fish. Model organism: Atlantic cod (Gadus morhua). LSID: urn:lsid:zoobank.org:act:389BE401-2718-4CF2-BBAE-2E13A97A5E7B. COL Identifier: 6K72F.

10.
BMC Genomics ; 13: 55, 2012 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-22300585

RESUMO

BACKGROUND: Animals have developed extensive mechanisms of response to xenobiotic chemical attacks. Although recent genome surveys have suggested a broad conservation of the chemical defensome across metazoans, global gene expression responses to xenobiotics have not been well investigated in most invertebrates. Here, we performed genome survey for key defensome genes in Oikopleura dioica genome, and explored genome-wide gene expression using high density tiling arrays with over 2 million probes, in response to two model xenobiotic chemicals - the carcinogenic polycyclic aromatic hydrocarbon benzo[a]pyrene (BaP) the pharmaceutical compound Clofibrate (Clo). RESULTS: Oikopleura genome surveys for key genes of the chemical defensome suggested a reduced repertoire. Not more than 23 cytochrome P450 (CYP) genes could be identified, and neither CYP1 family genes nor their transcriptional activator AhR was detected. These two genes were present in deuterostome ancestors. As in vertebrates, the genotoxic compound BaP induced xenobiotic biotransformation and oxidative stress responsive genes. Notable exceptions were genes of the aryl hydrocarbon receptor (AhR) signaling pathway. Clo also affected the expression of many biotransformation genes and markedly repressed genes involved in energy metabolism and muscle contraction pathways. CONCLUSIONS: Oikopleura has the smallest number of CYP genes among sequenced animal genomes and lacks the AhR signaling pathway. However it appears to have basic xenobiotic inducible biotransformation genes such as a conserved genotoxic stress response gene set. Our genome survey and expression study does not support a role of AhR signaling pathway in the chemical defense of metazoans prior to the emergence of vertebrates.


Assuntos
Benzo(a)pireno/farmacologia , Clofibrato/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Genoma , Inativação Metabólica/genética , Urocordados , Xenobióticos/farmacologia , Animais , Sistema Enzimático do Citocromo P-450/classificação , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Bases de Dados Genéticas , Redes Reguladoras de Genes , Urocordados/efeitos dos fármacos , Urocordados/genética , Urocordados/metabolismo
11.
Sci Total Environ ; 814: 152732, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-34974025

RESUMO

The aim of the present study was to investigate effects of per- and polyfluoroalkyl substances (PFAS), both single compounds and a mixture of these, using precision-cut liver slices (PCLS) from Atlantic cod (Gadus morhua). PCLS were exposed for 48 h to perfluorooctane sulfonate (PFOS), perfluorooctanoate (PFOA) and perfluorononanoate (PFNA) (10, 50 and 100 µM), and three mixtures of these at equimolar concentrations (10, 50 and 100 µM). Transcriptomic responses were assessed using RNA sequencing. Among exposures to single PFAS, PFOS produced the highest number of differentially expressed genes (DEGs) compared to PFOA and PFNA (86, 25 and 31 DEGs, respectively). Exposure to the PFAS mixtures resulted in a markedly higher number of DEGs (841). Clustering analysis revealed that the expression pattern of the PFAS mixtures were more similar to PFOS compared to PFOA and PFNA, suggesting that effects induced by the PFAS mixtures may largely be attributed to PFOS. Pathway analysis showed significant enrichment of pathways related to oxidative stress, cholesterol metabolism and nuclear receptors in PFOS-exposed PCLS. Fewer pathways were significantly enriched following PFOA and PFNA exposure alone. Significantly enriched pathways following mixture exposure included lipid biosynthesis, cancer-related pathways, nuclear receptor pathways and oxidative stress-related pathways such as ferroptosis. The expression of most of the genes within these pathways was increased following PFAS exposure. Analysis of non-additive effects in the 100 µM PFAS mixture highlighted genes involved in the antioxidant response and membrane transport, among others, and the majority of these genes had synergistic expression patterns in the mixture. Nevertheless, 90% of the DEGs following mixture exposure showed additive expression patterns, suggesting additivity to be the major mixture effect. In summary, PFAS exposure promoted effects on cellular processes involved in oxidative stress, nuclear receptor pathways and sterol metabolism in cod PCLS, with the strongest effects observed following PFAS mixture exposure.


Assuntos
Ácidos Alcanossulfônicos , Poluentes Ambientais , Fluorocarbonos , Gadus morhua , Ácidos Alcanossulfônicos/metabolismo , Ácidos Alcanossulfônicos/toxicidade , Animais , Poluentes Ambientais/metabolismo , Fluorocarbonos/análise , Gadus morhua/genética , Fígado/química , Estresse Oxidativo , Receptores Citoplasmáticos e Nucleares/metabolismo
12.
Environ Int ; 163: 107203, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35364415

RESUMO

Toxicity mediated by per- and polyfluoroalkyl substances (PFAS), and especially perfluoroalkyl acids (PFAAs), has been linked to activation of peroxisome proliferator-activated receptors (Ppar) in many vertebrates. Here, we present the primary structures, phylogeny, and tissue-specific distributions of the Atlantic cod (Gadus morhua) gmPpara1, gmPpara2, gmPparb, and gmPparg, and demonstrate that the carboxylic acids PFHxA, PFOA, PFNA, as well as the sulfonic acid PFHxS, activate gmPpara1 in vitro, which was also supported by in silico analyses. Intriguingly, a binary mixture of PFOA and the non-activating PFOS produced a higher activation of gmPpara1 compared to PFOA alone, suggesting that PFOS has a potentiating effect on receptor activation. Supporting the experimental data, docking and molecular dynamics simulations of single and double-ligand complexes led to the identification of a putative allosteric binding site, which upon binding of PFOS stabilizes an active conformation of gmPpara1. Notably, binary exposures of gmPpara1, gmPpara2, and gmPparb to model-agonists and PFAAs produced similar potentiating effects. This study provides novel mechanistic insights into how PFAAs may modulate the Ppar signaling pathway by either binding the canonical ligand-binding pocket or by interacting with an allosteric binding site. Thus, individual PFAAs, or mixtures, could potentially modulate the Ppar-signaling pathway in Atlantic cod by interfering with at least one gmPpar subtype.


Assuntos
Ácidos Alcanossulfônicos , Poluentes Ambientais , Fluorocarbonos , Gadus morhua , Ácidos Alcanossulfônicos/toxicidade , Animais , Fluorocarbonos/análise , Hormônios Esteroides Gonadais , Ligantes , Receptores Ativados por Proliferador de Peroxissomo
13.
Toxicol Lett ; 370: 35-41, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36089169

RESUMO

Microplastic particles are ubiquitous in the environment. However, little is known about their uptake and effects in humans or mammalian model organisms. Here, we studied the effects of pristine polyamide (15-20 µm) and polyethylene (40-48 µm) particles after oral ingestion in rats. The animals received feed containing microplastic particles (0.1% polyamide or polyethylene, or a mixture of both polymers) or a control diet without microplastic particles, for 5 weeks. The permeability of the duodenum was investigated in an Ussing chamber, whereas gene expression and concentration of tight junction proteins were measured in gut tissue and plasma. Microplastic particles were quantified by pyrolysis-gas chromatography/mass spectrometry in rats' feces. Rats fed with microplastic particles had higher duodenal permeability. Expression of gene coding for the tight junction protein occludin (OCLN) was higher in PE treated animals compared to control or the PA group. No changes in the expression of the gene coding for zonula occludens protein 1 were detected. Occludin protein concentrations were below the limit of detection of the applied method in both gut and plasma. Zonula occludens protein 1 concentrations in the gut were significantly higher in groups exposed to PA and PE as compared to control, while zonula occludens protein 1 concentrations in plasma did not show significant changes. These results demonstrated that short-term exposure to a dose of 0.1% (w/w) microplastic particles in feed had limited effects on duodenal permeability, expression of pro-inflammatory protein genes and tight junction protein genes in the duodenum.


Assuntos
Microplásticos , Nylons , Animais , Ingestão de Alimentos , Expressão Gênica , Humanos , Mucosa Intestinal/metabolismo , Mamíferos/genética , Mamíferos/metabolismo , Nylons/metabolismo , Nylons/farmacologia , Ocludina/genética , Permeabilidade , Plásticos/metabolismo , Plásticos/farmacologia , Polietileno/toxicidade , Ratos , Ratos Wistar , Proteínas de Junções Íntimas/genética , Proteínas de Junções Íntimas/metabolismo , Junções Íntimas , Proteína da Zônula de Oclusão-1/metabolismo
14.
Mar Genomics ; 65: 100981, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35969942

RESUMO

Arctic and sub-arctic pelagic organisms can be exposed to effluents and spills from offshore petroleum-related activities and thus it is important to understand how they respond to crude oil related contaminants such as polycyclic aromatic hydrocarbons (PAHs). The copepod species Calanus finmarchicus, Calanus glacialis and Calanus hyperboreus represent key links in the arctic marine food web. We performed a transcriptome analysis of the three species exposed to phenanthrene (Phe) and benzo[a]pyrene (BaP) representing low and high molecular weight PAHs, respectively. Differential expression of several genes involved in many cellular pathways was observed after 72 h exposure to Phe (0.1 µM) and BaP (0.1 µM). In C. finmarchicus and C. glacialis, the exposure resulted in up-regulation of genes encoding enzymes in xenobiotic biotransformation, particularly the phase II cytosolic sulfonation system that include 3'-phosphoadenosine 5'-phosphosulfate synthase (PAPSS) and sulfotransferases (SULTs). The sulfonation pathway genes were more strongly induced by BaP than Phe in C. finmarchicus and C. glacialis but were not affected in C. hyperboreus. However, a larger number of genes and pathways were modulated in C. hyperboreus by the PAHs including genes encoding xenobiotic biotransformation and lipid metabolism enzymes, suggesting stronger responses in this species. The results suggest that the cytosolic sulfonation is a major phase II conjugation pathway for PAHs in C. finmarchicus and C. glacialis. Some of the biotransformation systems affected are known to be involved in metabolism of endogenous compounds such as ecdysteroids, which may suggest potential interference with physiological and developmental processes of the copepod species.


Assuntos
Copépodes , Fenantrenos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Benzo(a)pireno/metabolismo , Benzo(a)pireno/toxicidade , Copépodes/genética , Copépodes/metabolismo , Fenantrenos/metabolismo , Fenantrenos/toxicidade , Transcriptoma , Poluentes Químicos da Água/toxicidade , Xenobióticos
15.
Sci Total Environ ; 807(Pt 1): 150697, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34610396

RESUMO

Photo-enhanced toxicity of crude oil is produced by exposure to ultraviolet (UV) radiation. Atlantic cod (Gadus morhua) embryos were exposed to crude oil with and without UV radiation (290-400 nm) from 3 days post fertilization (dpf) until 6 dpf. Embryos from the co-exposure experiment were continually exposed to UV radiation until hatching at 11 dpf. Differences in body burden levels and cyp1a expression in cod embryos were observed between the exposure regimes. High doses of crude oil produced increased mortality in cod co-exposed embryos, as well as craniofacial malformations and heart deformities in larvae from both experiments. A higher number of differentially expressed genes (DEGs) and pathways were revealed in the co-exposure experiment, indicating a photo-enhanced effect of crude oil toxicity. Our results provide mechanistic insights into crude oil and photo-enhanced crude oil toxicity, suggesting that UV radiation increases the toxicity of crude oil in early life stages of Atlantic cod.


Assuntos
Gadus morhua , Petróleo , Poluentes Químicos da Água , Animais , Larva , Petróleo/toxicidade , Raios Ultravioleta , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
16.
Chemosphere ; 279: 130588, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33901891

RESUMO

High concentrations of mercury (Hg) have been documented in deep-water fish species from some Norwegian fjords. In this study, tusk (Brosme brosme) was sampled from four locations in the innermost parts of Sognefjorden in Western Norway. Total Hg and methylmercury (MeHg) levels were measured in liver tissue. To search for potential sublethal effects of Hg, we characterized the hepatic transcriptome in tusk with high and low levels of Hg bioaccumulation using global transcriptomics analysis (RNA-seq). The results showed that there was a significant correlation between fish weight and accumulated concentrations of MeHg but not total Hg. MeHg accounted for 30-40% of total Hg in liver of most of the fish, although at concentrations above 2-3 mg Hg/kg wet weight the percentage of MeHg dropped considerably. Transcriptome analysis resulted in hundreds of differentially expressed genes in the liver of tusk with high Hg levels. Functional enrichment analysis suggested that the top affected pathways are associated with protein folding, adipogenesis, notch signaling, and lipid metabolism (beta-oxidation and phospholipids). Based on transcriptional responses pointing to well-known effects of Hg compounds in fish, the study suggests that tusk in Sognefjorden could be negatively impacted by Hg bioaccumulation.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Animais , Bioacumulação , Monitoramento Ambiental , Estuários , Peixes , Mercúrio/análise , Mercúrio/toxicidade , Compostos de Metilmercúrio/análise , Compostos de Metilmercúrio/toxicidade , Noruega , Água , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
17.
Toxicol In Vitro ; 75: 105193, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34015484

RESUMO

Polar cod (Boreogadus saida) is a key species in the arctic marine ecosystem vulnerable to effects of pollution, particularly from petroleum related activities. To facilitate studying the effects of those pollutants, we adapted a precision-cut liver slice culture protocol for this species. Using this system on board a research vessel, we studied gene expression in liver slice after exposure to the polycyclic aromatic hydrocarbon (PAH) benzo[a]pyrene (BaP), ethynylestradiol (EE2), and their mixtures, to map their molecular targets and examine possible anti-estrogenic effects of BaP. The exposure experiments were performed with BaP alone (0.1, 1, and 10 µM) or in combination with low concentrations of EE2 (5 nM) to mimic physiological estradiol levels in early vitellogenic female fish. Transcriptome analysis (RNA-seq) was performed after 72 h exposure in culture to map the genes and cellular pathways affected. The results provide a view of global transcriptome responses to BaP and EE2, which resulted in enrichment of many pathways such as the aryl hydrocarbon (Ahr) and estrogen receptor pathways. In the mixture exposure, BaP resulted in anti-estrogenic effects, shown by attenuation of EE2 activated transcription of many estrogen target genes. The results from this ex vivo experiment suggest that pollutants that activate the Ahr pathway such as the PAH compound BaP can result in anti-estrogenic effects that may lead to endocrine disruption in polar cod.


Assuntos
Benzo(a)pireno/farmacologia , Antagonistas de Estrogênios/farmacologia , Estrogênios/farmacologia , Etinilestradiol/farmacologia , Fígado/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Animais , Feminino , Gadiformes/genética , Perfilação da Expressão Gênica , Fígado/metabolismo , Técnicas de Cultura de Tecidos , Vitelogeninas/metabolismo
18.
Sci Total Environ ; 755(Pt 1): 142904, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33138996

RESUMO

Because of their global consumption and persistence, per- and polyfluoroalkyl substances (PFASs), are ubiquitously distributed in the environment, as well as in wildlife and humans. In the present study, we have employed an ex vivo organ culture technique, based on the floating agarose method, of Atlantic cod ovarian tissue to investigate the effects of three different concentrations of PFOS, PFOA (1, 5 and 25 µM) and PFNA (0.5, 5 and 50 µM), used singly and in also in combination (1×, 20× and 100×). In the 1× exposure mixture, concentrations were decided based on their proportional levels (in molar equivalents) relative to PFOS, which is the most abundant PFAS in cod liver from a 2013 screening project. To investigate the detailed underlying mechanisms and biological processes, transcriptome sequencing was performed on exposed ovarian tissue. The number of differentially expressed genes (DEGs) having at least 0.75 log2-fold change was elevated in high, compared to low and medium concentration exposures. The highest PFNA, PFOA and PFOS concentrations, and the highest (100×) mixture exposure, showed 40, 68, 1295, and 802 DEGs, respectively. The latter two exposure groups shared a maximum of 438 DEGs. In addition, they both shared the majority of functionally enriched pathways belonging to biological processes such as cellular signaling, cell adhesion, lipid metabolism, immunological responses, cancer, reproduction and metabolism. Shortlisted DEGs that were specifically annotated to reproduction associated gene ontology (GO) terms were observed only in the highest PFOS and mixture exposure groups. These transcripts contributed to ovarian key events such as steroidogenesis (star, cyp19a1a), oocyte growth (amh), maturation (igfbp5b, tgfß2, tgfß3), and ovulation (pgr, mmp2). Contrary to other PFAS congeners, the highest PFOS concentration showed almost similar transcript expression patterns compared to the highest mixture exposure group. This indicates that PFOS is the active component of the mixture that significantly altered the normal functioning of female gonads, and possibly leading to serious reproductive consequences in teleosts.


Assuntos
Ácidos Alcanossulfônicos , Fenômenos Biológicos , Fluorocarbonos , Gadus morhua , Ácidos Alcanossulfônicos/toxicidade , Animais , Feminino , Fluorocarbonos/toxicidade , Gadus morhua/genética , Humanos , Fígado , Transcriptoma
19.
Front Mol Biosci ; 7: 591406, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33324679

RESUMO

The availability of genome sequences, annotations, and knowledge of the biochemistry underlying metabolic transformations has led to the generation of metabolic network reconstructions for a wide range of organisms in bacteria, archaea, and eukaryotes. When modeled using mathematical representations, a reconstruction can simulate underlying genotype-phenotype relationships. Accordingly, genome-scale metabolic models (GEMs) can be used to predict the response of organisms to genetic and environmental variations. A bottom-up reconstruction procedure typically starts by generating a draft model from existing annotation data on a target organism. For model species, this part of the process can be straightforward, due to the abundant organism-specific biochemical data. However, the process becomes complicated for non-model less-annotated species. In this paper, we present a draft liver reconstruction, ReCodLiver0.9, of Atlantic cod (Gadus morhua), a non-model teleost fish, as a practicable guide for cases with comparably few resources. Although the reconstruction is considered a draft version, we show that it already has utility in elucidating metabolic response mechanisms to environmental toxicants by mapping gene expression data of exposure experiments to the resulting model.

20.
Aquat Toxicol ; 227: 105590, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32891021

RESUMO

The aim of the present study was to investigate effects of defined mixtures of polycyclic aromatic hydrocarbons (PAHs) and perfluoroalkyl substances (PFASs), at low, environmentally relevant (1× = L), or high (20× = H) doses, on biological responses in Atlantic cod (Gadus morhua). To this end, farmed juvenile cod were exposed at day 0 and day 7 via intraperitoneal (i.p.) injections, in a two-week in vivo experiment. In total, there were 10 groups of fish (n = 21-22): two control groups, four separate exposure groups of PAH and PFAS mixtures (L, H), and four groups combining PAH and PFAS mixtures (L/L, H/L, L/H, H/H). Body burden analyses confirmed a dose-dependent accumulation of PFASs in cod liver and PAH metabolites in bile. The hepatosomatic index (HSI) was significantly reduced for three of the combined PAH/PFAS exposure groups (L-PAH/H-PFAS, H-PAH/L-PFAS, H-PAH/H-PFAS). Analysis of the hepatic proteome identified that pathways related to lipid degradation were significantly affected by PFAS exposure, including upregulation of enzymes in fatty acid degradation pathways, such as fatty acid ß-oxidation. The increased abundances of enzymes in lipid catabolic pathways paralleled with decreasing levels of triacylglycerols (TGs) in the H-PFAS exposure group, suggest that PFAS increase lipid catabolism in Atlantic cod. Markers of oxidative stress, including catalase and glutathione S-transferase activities were also induced by PFAS exposure. Only minor and non-significant differences between exposure groups and control were found for cyp1a and acox1 gene expressions, vitellogenin concentrations in plasma, Cyp1a protein synthesis and DNA fragmentation. In summary, our combined proteomics and lipidomics analyses indicate that PFAS may disrupt lipid homeostasis in Atlantic cod.


Assuntos
Fluorocarbonos/toxicidade , Gadus morhua/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Bile/metabolismo , Biomarcadores/metabolismo , Fluorocarbonos/análise , Lipidômica , Fígado/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/análise , Proteoma/metabolismo , Proteômica , Vitelogeninas/metabolismo , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa