Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Bioorg Chem ; 135: 106511, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37027951

RESUMO

Medication products from natural materials are preferred due to their minimal side effects. Extra-virgin olive oil (EVOO) is a highly acclaimed Mediterranean diet and a common source of lipids that lowers morbidity and disease severity. This study synthesised two fatty amides from EVOO: hydroxamic fatty acids (FHA) and fatty hydrazide hydrate (FHH). The Density Functional Theory (DFT) was applied to quantum mechanics computation. Nuclear magnetic resonance (NMR), Fourier transforms infrared (FTIR), and element analysis were used to characterise fatty amides. Likewise, the minimum inhibitory concentration (MIC) and timing kill assay were determined. The results revealed that 82 % for FHA and 80 % for FHH conversion were achieved. The amidation reagent/EVOO ratio (mmol: mmol) was 7:1, using the reaction time of 12 h and hexane as an organic solvent. The results further revealed that fatty amides have high antibacterial activity with low concentration at 0.04 µg/mL during eight h of FHA and 0.3 µg/mL during ten h of FHH. This research inferred that FHA and FHH could provide an alternative and effective therapeutic strategy for bacterial diseases. Current findings could provide the basis for the modernisation/introduction of novel and more effective antibacterial drugs derived from natural products.


Assuntos
Modelos Teóricos , Azeite de Oliva/análise , Azeite de Oliva/química , Azeite de Oliva/farmacologia , Análise Espectral
2.
Bioorg Chem ; 140: 106786, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37586131

RESUMO

Recent studies show that some metal ions, injure microbial cells in various ways due to membrane breakdown, protein malfunction, and oxidative stress. Metal complexes are suited for creating novel antibacterial medications due to their distinct mechanisms of action and the variety of three-dimensional geometries they can acquire. In this Perspective, the present study focused on new antibacterial strategies based on metal oleoyl amide complexes. Thus, oleoyl amides ligand (fatty hydroxamic acid and fatty hydrazide hydrate) with the transition metal ions named Ag (I), Co (II), Cu (II), Ni (II) and Sn (II) complexes were successfully synthesized in this study. The metals- oleoyl amide were characterized using elemental analysis, and fourier transforms infrared (FTIR) spectroscopy. The antibacterial effect of metals- oleoyl amide complexes was investigated for Gram-negative bacteria (Escherichia coli) and Gram-positive bacteria (Staphylococcus aureus) by analysing minimum inhibitory concentration (MIC), minimal bactericidal concentration (MBC), and scanning electron microscopy (SEM). The results showed that metal-oleoyl amide complexes have high antibacterial activity at low concentrations. This study inferred that metal oleoyl amide complexes could be utilised as a promising therapeutic antibacterial agent.


Assuntos
Complexos de Coordenação , Elementos de Transição , Complexos de Coordenação/farmacologia , Antibacterianos/farmacologia , Elementos de Transição/farmacologia , Metais , Testes de Sensibilidade Microbiana , Íons , Ligantes
3.
J Esthet Restor Dent ; 35(2): 322-332, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36628650

RESUMO

OBJECTIVE: To the effectiveness of different strategies to overcome silver diamine fluoride (SDF)-mediated tooth staining. MATERIALS AND METHODS: Four online databases (PubMed, ScienceDirect, Scopus, and Web of Science) were searched using different MeSH terms and Boolean Operators to retrieve the articles (until June 2021), followed by a hand-search of the reference list of the included articles. All full-text, original studies in English that evaluated SDF staining and at least one SDF modification/alternative were included. RESULTS: Among the assessed studies, nine studies explored the stain-minimization effect of potassium iodide (KI) post-application following SDF treatment. Among these, eight concluded that KI application after SDF treatment significantly reduced tooth staining, while one showed marginal staining following glass ionomer restoration of the SDF-treated dentine. Additionally, one study applied potassium fluoride (KF) and silver nitrate (AgNO3 ) concurrently to mitigate SDF-mediated staining. One study compared SDF staining with polyethylene glycol (PEG)-coated nanoparticles containing sodium fluoride (NaF), and another used nanosilver fluoride (NSF) for staining comparison with SDF. CONCLUSIONS: Within the limitations of this study, the addition of different materials to SDF has proven to be a beneficial strategy for overcoming tooth staining associated with SDF. Future studies are warranted, particularly clinical trials, to validate these findings. CLINICAL SIGNIFICANCE: SDF-mediated tooth staining is a serious concern that limits its clinical use. A review of various strategies to overcome this problem will help clinicians enhance its clinical use and patient acceptance.


Assuntos
Cárie Dentária , Descoloração de Dente , Humanos , Fluoretos Tópicos/uso terapêutico , Compostos de Prata/uso terapêutico , Iodeto de Potássio/uso terapêutico , Coloração e Rotulagem , Cariostáticos/uso terapêutico
4.
Caries Res ; 56(3): 149-160, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35871511

RESUMO

Silver diammine fluoride (SDF) is known as a noninvasive, cost-effective, safe, and simple method of dental caries treatment. However, staining and discoloration seem inseparable with SDF and continue as a cosmetic concern. Research is ongoing to overcome these issues, for example, by using glutathione (G) or potassium iodide among others. Therefore, the study aimed to investigate the effects of incorporating different concentrations of capping agents on SDF chemistry and SDF-mediated tooth staining at different time points. Tannic acid (TA), gallic acid (GA), carboxymethyl chitosan (CM), and G at different concentrations (5, 10, and 15% w/v) were incorporated in 30% SDF. FTIR and UV-Vis spectroscopies of the prepared solutions was performed to evaluate chemical changes. Time-dependent color changes (ΔE) in bovine dentine specimens (6 × 6 × 1 ± 0.25 mm3) were measured spectrophotometrically at application/washup, 1 and 3 h, after 1, 2, 4, 7, and 14 days. Results showed suppression of FTIR peaks at 3,358 cm-1 and 1,215 cm-1 in capping agent-modified SDF indicative of a successful capping effect of the silver ions, which was corroborated by UV-Vis blueshift of ∼∆32 nm. The capping effect on SDF increased proportionally with the concentrations of TA, GA, CM, and G used. A more pronounced tooth staining reduction however was shown more in TA- and G- rather than in GA- and CM-modified SDF. At day 14, SDF showed the highest mean ΔE(50.14 ± 2.14), while 15% TA showed the lowest ΔE(30.14 ± 0.81). In conclusion, capping agent incorporation significantly reduced SDF-mediated tooth staining. This reduction in staining is more dependent on the respective capping agent functional groups than concentrations per se. The potential of capping agents to minimize tooth staining of SDF was TA>G>CM>GA.


Assuntos
Cárie Dentária , Descoloração de Dente , Humanos , Bovinos , Animais , Dentina , Fluoretos Tópicos/farmacologia , Compostos de Amônio Quaternário/farmacologia , Descoloração de Dente/tratamento farmacológico , Coloração e Rotulagem , Cariostáticos/farmacologia
5.
J Mater Sci Mater Med ; 30(6): 72, 2019 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-31187295

RESUMO

The success of wound healing depends upon the proper growth of vascular system in time in the damaged tissues. Poor blood supply to wounded tissues or tissue engineered grafts leads to the failure of wound healing or rejection of grafts. In present paper, we report the synthesis of novel organosoluble and pro-angiogenic chitosan derivative (CSD) by the reaction of chitosan with 1,3-dimethylbarbituric acid and triethylorthoformate (TEOF). The synthesized material was characterized by FTIR and 13C-NMR to confirm the incorporated functional groups and new covalent connectivities. Biodegradability of the synthesized chitosan derivative was tested in the presence of lysozyme and was found to be comparable with CS. The cytotoxicity and apoptosis effect of new derivative was determined against gastric adenocarcinoma (AGS) cells and was found to be non-toxic. The CSD was found to be soluble in majority of organic solvents. It was blended with polycaprolactone (PCL) to form composite scaffolds. From an ex ovo CAM assay, it was noted that CSD stimulated the angiogenesis.


Assuntos
Quitosana/química , Sistemas de Liberação de Medicamentos , Alicerces Teciduais/química , Cicatrização , Adenocarcinoma/tratamento farmacológico , Apoptose , Barbitúricos/química , Materiais Biocompatíveis , Linhagem Celular Tumoral , Membrana Corioalantoide/metabolismo , Formiatos/química , Humanos , Hidrogéis/química , Espectroscopia de Ressonância Magnética , Muramidase/química , Neovascularização Patológica , Neovascularização Fisiológica , Poliésteres/química , Solubilidade , Solventes , Espectroscopia de Infravermelho com Transformada de Fourier , Neoplasias Gástricas/tratamento farmacológico , Engenharia Tecidual/métodos , Viscosidade
8.
Int J Phytoremediation ; 19(7): 686-694, 2017 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-28121459

RESUMO

Fennel seed spent (FSS)-an inexpensive nutraceutical industrial spent has been used as an efficient biosorbent for the removal of Congo red (CR) from aqueous media. Results show that the conditions for maximum adsorption would be pH 2-4 and 30°C were ideal for maximum adsorption. Based on regression fitting of the data, it was determined that the Sips isotherm (R2 = 0.994, χ2 = 0.5) adequately described the mechanism of adsorption, suggesting that the adsorption occurs homogeneously with favorable interaction between layers with favorable interaction between layers. Thermodynamic analysis showed that the adsorption is favorable (negative values for ΔG°) and endothermic (ΔH° = 12-20 kJ mol-1) for initial dye concentrations of 25, 50, and 100 ppm. The low ΔH° value indicates that the adsorption is a physical process involving weak chemical interactions like hydrogen bonds and van der Waals interactions. The kinetics revealed that the adsorption process showed pseudo-second-order tendencies with the equal influence of intraparticle as well as film diffusion. The scanning electron microscopy images of FSS show a highly fibrous matrix with a hierarchical porous structure. The Fourier transform infrared spectroscopy analysis of the spent confirmed the presence of cellulosic and lignocellulosic matter, giving it both hydrophilic and hydrophobic properties. The investigations indicate that FSS is a cost-effective and efficient biosorbent for the remediation of toxic CR dye.


Assuntos
Biodegradação Ambiental , Vermelho Congo/química , Foeniculum , Poluentes Químicos da Água/química , Purificação da Água , Adsorção , Suplementos Nutricionais , Concentração de Íons de Hidrogênio , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Termodinâmica
9.
Inorg Chem ; 52(10): 5624-6, 2013 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-23627942

RESUMO

Perovskite-structured lead titanate thin films have been grown on FTO-coated glass substrates from a single-source heterometallic molecular complex, [PbTi(µ2-O2CCF3)4(THF)3(µ3-O)]2 (1), which was isolated in quantitative yield from the reaction of tetraacetatolead(IV), tetrabutoxytitanium(IV), and trifluoroacetic acid from a tetrahydrofuran solution. Complex 1 has been characterized by physicochemical methods such as melting point, microanalysis, FTIR, (1)H and (19)F NMR, thermal analysis, and single-crystal X-ray diffraction (XRD) analysis. Thin films of lead titanate having spherical particles of various sizes have been grown from 1 by aerosol-assisted chemical vapor deposition at 550 °C. The thin films have been characterized by powder XRD, scanning electron microscopy, and energy-dispersive X-ray analysis. An optical band gap of 3.69 eV has been estimated by UV-visible spectrophotometry.

10.
Acta Crystallogr Sect E Struct Rep Online ; 68(Pt 7): o2087, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22798768

RESUMO

The mol-ecule of the title compound, C(20)H(16)N(2)O(2), is centrosymmetric, the inversion center being located at the mid-point of the central azine bond. The conformation around the C=N bond is E. The whole mol-ecule (except for the H atoms) is essentially planar, with an r.m.s. deviation of 0.07 Å. In the crystal, mol-ecules are linked head-to-tail by pairs of C-H⋯O hydrogen bonds, forming inversion dimers, and resulting in the formation of chains propagating along [011].

11.
Acta Crystallogr Sect E Struct Rep Online ; 68(Pt 10): o2990, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23125764

RESUMO

The complete molecule of the title compound, C(18)H(20)N(2)O(4), is generated by inversion symmetry. The conformation around the C=N bond is E. With the exception of the eth-oxy substituent, the mol-ecule is essentially planar with an r.m.s. deviation of 0.0455 Å. In the crystal, mol-ecules are linked by O-H⋯N hydrogen bonds into a two-dimensional supra-molecular network parallel to the bc plane.

12.
Acta Crystallogr Sect E Struct Rep Online ; 67(Pt 11): o2900, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22219934

RESUMO

The mol-ecule of the title compound, C(20)H(16)N(2)O(2), is centrosymmetric with the mid-point of the central N-N bond located on an inversion center. The configuration around the C=N bond is E. The whole mol-ecule (except for the H atoms) is approximately planar, with an r.m.s. deviation of 0.07 Å. In the crystal, the presence of weak inter-molecular C-H⋯O hydrogen bonding involving each acetyl-ene H atom and the adjacent phen-oxy O atom results in the formation of supra-molecular chains.

13.
Acta Crystallogr Sect E Struct Rep Online ; 67(Pt 7): o1659, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21837059

RESUMO

The complete mol-ecule in the title compound, C(22)H(20)N(2)O(4), is generated by the application of an inversion centre. With the exception of the terminal acetyl-ene groups [C-O-C-C = -78.02 (17)°], the remaining atoms constituting the mol-ecule are essentially coplanar. The configuration around the C=N bond [1.282 (2) Å] is E. The formation of supra-molecular chains mediated by C-H⋯O inter-actions, occurring between methyl-ene H and meth-oxy O atoms, is the most notable feature of the crystal packing.

14.
Polymers (Basel) ; 13(21)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34771242

RESUMO

This study explores the possibility of transforming lignocellulose-rich agricultural waste materials into value-added products. Cellulose was extracted from an empty fruit bunch of oil palm and further modified into carboxymethyl cellulose (CMC), a water-soluble cellulose derivative. The CMC was then employed as the polymeric content in fabrication of solid polymer electrolyte (SPE) films incorporated with lithium iodide. To enhance the ionic conductivity of the solid polymer electrolytes, the compositions were optimized with different amounts of glycerol as a plasticizing agent. The chemical and physical effects of plasticizer content on the film composition were studied by Fourier transform infrared (FTIR) and X-ray diffraction (XRD) analysis. FTIR and XRD analysis confirmed the interaction plasticizer with the polymer matrix and the amorphous nature of fabricated SPEs. The highest ionic conductivity of 6.26 × 10-2 S/cm was obtained with the addition of 25 wt % of glycerol. By fabricating solid polymer electrolytes from oil palm waste-derived cellulose, the sustainability of the materials can be retained while reducing the dependence on fossil fuel-derived materials in electrochemical devices.

15.
Antibiotics (Basel) ; 10(1)2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33477455

RESUMO

This paper presents for the first time a successful fabrication of ternary ZnO/TiO2/Ag nanocomposites consisting of zinc oxide (ZnO), titania (TiO2) and silver (Ag) nanoparticles (NPs) synthesised using Morinda citrifolia fruit (MCF) extract. ZnONPs were synthesised using the co-precipitation method, and TiO2 and Ag were introduced into the precursor solutions under microwave irradiation to obtain ZnO/TiO2/Ag nanocomposites (NCs). This material demonstrated enhanced bactericidal effect towards bacterial pathogens compared to that of the binary TiO2/Ag, Ag and TiO2 alone. In vitro cytotoxicity results of the as-synthesised ZnO/TiO2/AgNCs on RAW 264.7 macrophages and A549 cell lines revealed a negative role in cytotoxicity, but contributed astoundingly towards antimicrobials as compared of Ag alone and binary Ag/TiO2. This study shows that the resultant ternary metal/bi-semiconductor nanocomposites may provide a therapeutic strategy for the eradication of bacterial pathogens without affecting the healthy mammalian cells.

16.
Polymers (Basel) ; 12(3)2020 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-32120814

RESUMO

This work is a pioneer attempt to fabricate quasi-solid dye-sensitized solar cell (QSDDSC) based on organosoluble starch derivative. Rheological characterizations of the PhSt-HEC blend based gels exhibited viscoelastic properties favorable for electrolyte fabrication. From amplitude sweep and tack test analyses, it was evident that the inclusion of LiI improved the rigidity and tack property of the gels. On the other hand, the opposite was true for TPAI based gels, which resulted in less rigid and tacky electrolytes. The crystallinity of the gels was found to decline with increasing amount of salt in both systems. The highest photoconversion efficiency of 3.94% was recorded upon addition of 12.5 wt % TPAI and this value is one of the highest DSSC performance recorded for starch based electrolytes. From electrochemical impedance spectroscopy (EIS), it is deduced that the steric hindrance imposed by bulky cations aids in hindering recombination between photoanode and electrolyte.

17.
Acta Crystallogr Sect E Struct Rep Online ; 64(Pt 9): m1175, 2008 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-21201619

RESUMO

In the crystal structure of the title compound, [Cr(3)(C(2)Cl(3)O(2))(7)O(H(2)O)(2)]·3CH(3)CN, the trinuclear [Cr(3)O(H(2)O)(2)(Cl(3)CCO(2))(7)] mol-ecule has an oxide O atom that is connected to one monodentate trichloro-acetate-coordinated and two water-coordinated Cr(III) atoms, the three metal atoms forming the points of an equilateral triangle. Each of the six remaining carboxyl-ate groups bridges a Cr-O-Cr fragment. The cluster inter-acts with the three solvent mol-ecules through water-acetonitrile O-H⋯N hydrogen bonds. Adjacent clusters are linked by a water-carboxylate O-H⋯O hydrogen bond to give a helical chain. One of the CCl(3) groups was found to be disordered over two positions, with the major component having a site-occupancy factor of 0.64 (1).

18.
J Mech Behav Biomed Mater ; 67: 135-143, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28006713

RESUMO

In all-ceramic systems, a high incidence of veneer chip-off has been reported in clinical studies. Coefficient of thermal expansion (CTE) behaviour is one of the factors that may increase residual stress in the interface and influence the veneer/core bond strength. Therefore, this study aimed to evaluate the effect of sodalite zeolite-infiltration on the CTE behaviour and bond strength of different all-ceramic prostheses. The case-study groups were synthesized sodalite zeolite-infiltrated alumina (IA-SOD) and synthesized sodalite zeolite-infiltrated zirconia-toughened alumina (ZTA) (IZ-SOD), while the control groups were glass-infiltrated alumina (IA-glass) and glass-infiltrated ZTA (IZ-glass). Forty cylindrical-shaped samples measuring 5 mm in diameter and 10 mm in height were tested for CTE using a thermo-mechanical analyser machine, and forty disc-shaped ceramic samples measuring 12 mm in diameter and 1.2 ± 0.2 mm in thickness were prepared using specially designed stainless steel split mould and veneered by cylinder-shaped (2 mm high × 2 mm diameter) low-fusing porcelain (Vita VM7). The veneer/core samples were sintered and tested for shear bond strength using a high precision universal testing machine. Scanning electron microscope, stereo microscope, atomic force microscope, and energy-dispersive X-ray spectroscopy were used to investigate the structural characteristics of samples at the fracture surface. The collected data were analyzed with a one-way ANOVA and Tukey HSD test (α=.05). IZ-SOD revealed highest CTE and shear bond strength values, while the IA-glass revealed the lowest values than the other groups. There was no significant difference in CTE and bond strength among IZ-SOD, IA-SOD and IZ-glass samples (p>0.05). The experimental SOD zeolite-infiltrated samples revealed higher CTE mismatch and bond strength along with a more favourable mode of failure than did the commercial glass-infiltrated samples. Sandblast technique is considered as effective conditioning procedure for enhancing the surface roughness of SOD zeolite-infiltrated frameworks which subsequently improving the bond strength.


Assuntos
Cerâmica , Colagem Dentária , Prótese Dentária , Facetas Dentárias , Zeolitas/análise , Óxido de Alumínio , Porcelana Dentária , Análise do Estresse Dentário , Humanos , Teste de Materiais , Resistência ao Cisalhamento , Propriedades de Superfície
19.
Carbohydr Polym ; 167: 210-218, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28433156

RESUMO

A first-of-its-kind, eco-friendly quasi-solid bioelectrolyte derived from potato starch was prepared. Starch was chemically modified via phthaloylation to synthesize amorphous, hydrophobic starch derivative and the attachment of the phthaloyl group was confirmed via FTIR which showed phthalate ester peak at 1715cm-1; and 1H NMR peaks between 7.30-7.90ppm attributed to the aromatic protons of the phthaloyl group. The resulting starch derivative was then infused with ternary natural deep eutectic solvent (NADES) made from different molar ratios of choline chloride, urea and glycerol. Electrochemical Impedance Spectroscopy (EIS) revealed that the highest ionic conductivity was obtained by the system consisting of NADES with choline chloride:urea:glycerol in molar ratios of 4:6:2, with a magnitude of 2.86mScm-1, hence validating the prospects of the materials to be further experimented as an alternative electrolyte in various electrochemical devices.

20.
Nanomaterials (Basel) ; 7(6)2017 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-28561760

RESUMO

The performance of a modified electrode of nanocomposite films consisting of polypyrrole-chitosan-titanium dioxide (Ppy-CS-TiO2) has been explored for the developing a non-enzymatic glucose biosensors. The synergy effect of TiO2 nanoparticles (NPs) and conducting polymer on the current responses of the electrode resulted in greater sensitivity. The incorporation of TiO2 NPs in the nanocomposite films was confirmed by X-ray photoelectron spectroscopy (XPS) spectra. FE-SEM and HR-TEM provided more evidence for the presence of TiO2 in the Ppy-CS structure. Glucose biosensing properties were determined by amperommetry and cyclic voltammetry (CV). The interfacial properties of nanocomposite electrodes were studied by electrochemical impedance spectroscopy (EIS). The developed biosensors showed good sensitivity over a linear range of 1-14 mM with a detection limit of 614 µM for glucose. The modified electrode with Ppy-CS nanocomposite also exhibited good selectivity and long-term stability with no interference effect. The Ppy-CS-TiO2 nanocomposites films presented high electron transfer kinetics. This work shows the role of nanomaterials in electrochemical biosensors and describes the process of their homogeneous distribution in composite films by a one-step electrochemical process, where all components are taken in a single solution in the electrochemical cell.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa