Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 15(10): e1008410, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31584940

RESUMO

Mitochondria have been increasingly recognized as a central regulatory nexus for multiple metabolic pathways, in addition to ATP production via oxidative phosphorylation (OXPHOS). Here we show that inducing mitochondrial DNA (mtDNA) stress in Drosophila using a mitochondrially-targeted Type I restriction endonuclease (mtEcoBI) results in unexpected metabolic reprogramming in adult flies, distinct from effects on OXPHOS. Carbohydrate utilization was repressed, with catabolism shifted towards lipid oxidation, accompanied by elevated serine synthesis. Cleavage and translocation, the two modes of mtEcoBI action, repressed carbohydrate rmetabolism via two different mechanisms. DNA cleavage activity induced a type II diabetes-like phenotype involving deactivation of Akt kinase and inhibition of pyruvate dehydrogenase, whilst translocation decreased post-translational protein acetylation by cytonuclear depletion of acetyl-CoA (AcCoA). The associated decrease in the concentrations of ketogenic amino acids also produced downstream effects on physiology and behavior, attributable to decreased neurotransmitter levels. We thus provide evidence for novel signaling pathways connecting mtDNA to metabolism, distinct from its role in supporting OXPHOS.


Assuntos
Reprogramação Celular/genética , DNA Mitocondrial/genética , Diabetes Mellitus Tipo 2/genética , Mitocôndrias/genética , Trifosfato de Adenosina/genética , Animais , Metabolismo dos Carboidratos/genética , Carboidratos/genética , Enzimas de Restrição do DNA/genética , Diabetes Mellitus Tipo 2/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Humanos , Redes e Vias Metabólicas/genética , Mitocôndrias/metabolismo , Fosforilação Oxidativa , Estresse Oxidativo/genética
2.
J Neurogenet ; 24(4): 194-206, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21087194

RESUMO

Huntington's disease is an autosomal dominant neurodegenerative disorder that is caused by abnormal expansion of a polyglutamine tract in the huntingtin protein, resulting in intracellular aggregate formation and neurodegeneration. How neuronal cells are affected by such a polyglutamine tract expansion remains obscure. To dissect the ways in which polyglutamine expansion can cause neural dysfunction, the authors generated Drosophila transgenic strains expressing either a nuclear targeted or cytoplasmic form of pathogenic (NHtt-152Q(NLS), NHtt-152Q), or nonpathogenic (NHtt-18Q(NLS), NHtt-18Q) N-terminal human huntingtin. These proteins were expressed in the dendritic arborization neurons of the larval peripheral nervous system and their effects on neuronal survival, morphology, and larval locomotion were examined. The authors found that NHtt-152Q(NLS) larvae had altered dendrite morphology and larval locomotion, whereas NHtt-152Q, NHtt-18Q(NLS), and NHtt-18Q larvae did not. Furthermore, the authors examined the physiological defect underlying this disrupted larval locomotion in detail by recording spontaneous ongoing segmental nerve activity. NHtt-152Q(NLS) larvae displayed uncoordinated activity between anterior and posterior segments. Moreover, anterior segments had shorter bursts and longer interburst intervals in NHtt-152Q(NLS) larvae than in NHtt-18Q(NLS) larvae, whereas posterior segments had longer bursts and shorter interburst intervals. These results suggest that the pathogenic protein disrupts neuron function without inducing cell death, and describe how this dysfunction leads to a locomotor defect. These results also suggest that sensory inputs are necessary for the coordination of anterior and posterior body parts during locomotion. From these analyses the authors show that examination of motor behaviors in the Drosophila larvae is a powerful new model to dissect non-cell-lethal mechanisms of mutant Htt toxicity.


Assuntos
Dendritos/patologia , Drosophila , Corpos de Inclusão Intranuclear/metabolismo , Larva/metabolismo , Locomoção/genética , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Peptídeos/metabolismo , Animais , Animais Geneticamente Modificados , Padronização Corporal/genética , Morte Celular/genética , Núcleo Celular/metabolismo , Núcleo Celular/patologia , Dendritos/metabolismo , Modelos Animais de Doenças , Humanos , Proteína Huntingtina , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Doença de Huntington/fisiopatologia , Corpos de Inclusão Intranuclear/patologia , Larva/citologia , Larva/crescimento & desenvolvimento , Degeneração Neural/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/patologia , Neurônios/fisiologia , Proteínas Nucleares/metabolismo
3.
iScience ; 23(8): 101362, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32738610

RESUMO

Dopaminergic (DA) neurons have been implicated as key targets in neurological disorders, notably those involving locomotor impairment, and are considered to be highly vulnerable to mitochondrial dysfunction, a common feature of such diseases. Here we investigated a Drosophila model of locomotor disorders in which functional impairment is brought about by pan-neuronal RNAi knockdown of subunit COX7A of cytochrome oxidase (COX). Despite minimal neuronal loss by apoptosis, the expression and activity of tyrosine hydroxylase was decreased by half. Surprisingly, COX7A knockdown specifically targeted to DA neurons did not produce locomotor defect. Instead, using various drivers, we found that COX7A knockdown in specific groups of cholinergic and glutamatergic neurons underlay the phenotype. Based on our main finding, the vulnerability of DA neurons to mitochondrial dysfunction as a cause of impaired locomotion in other organisms, including mammals, warrants detailed investigation.

4.
Fly (Austin) ; 13(1-4): 12-28, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31526131

RESUMO

The Drosophila bang-sensitive mutant tko25t, manifesting a global deficiency in oxidative phosphorylation due to a mitochondrial protein synthesis defect, exhibits a pronounced delay in larval development. We previously identified a number of metabolic abnormalities in tko25t larvae, including elevated pyruvate and lactate, and found the larval gut to be a crucial tissue for the regulation of larval growth in the mutant. Here we established that expression of wild-type tko in any of several other tissues of tko25t also partially alleviates developmental delay. The effects appeared to be additive, whilst knockdown of tko in a variety of specific tissues phenocopied tko25t, producing developmental delay and bang-sensitivity. These findings imply the existence of a systemic signal regulating growth in response to mitochondrial dysfunction. Drugs and RNAi-targeted on pyruvate metabolism interacted with tko25t in ways that implicated pyruvate or one of its metabolic derivatives in playing a central role in generating such a signal. RNA-seq revealed that dietary pyruvate-induced changes in transcript representation were mostly non-coherent with those produced by tko25t or high-sugar, consistent with the idea that growth regulation operates primarily at the translational and/or metabolic level.


Assuntos
Drosophila melanogaster/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Mitocôndrias/fisiologia , Ácido Pirúvico/metabolismo , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Larva/crescimento & desenvolvimento
5.
Sci Rep ; 5: 18295, 2015 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-26672986

RESUMO

The mitochondrial alternative oxidase, AOX, carries out the non proton-motive re-oxidation of ubiquinol by oxygen in lower eukaryotes, plants and some animals. Here we created a modified version of AOX from Ciona instestinalis, carrying mutations at conserved residues predicted to be required for chelation of the diiron prosthetic group. The modified protein was stably expressed in mammalian cells or flies, but lacked enzymatic activity and was unable to rescue the phenotypes of flies knocked down for a subunit of cytochrome oxidase. The mutated AOX transgene is thus a potentially useful tool in studies of the physiological effects of AOX expression.


Assuntos
Ciona intestinalis/enzimologia , Drosophila melanogaster/enzimologia , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Ferro/metabolismo , Proteínas Mitocondriais/metabolismo , Mutação , Oxirredutases/metabolismo , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Linhagem Celular , Ciona intestinalis/genética , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Feminino , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Ferro/química , Masculino , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , Modelos Moleculares , Dados de Sequência Molecular , Oxirredutases/química , Oxirredutases/genética , Consumo de Oxigênio , Proteínas de Plantas/química , Proteínas de Plantas/genética , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos
6.
Nat Neurosci ; 18(10): 1437-45, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26322925

RESUMO

Neuronal dendrite branching is fundamental for building nervous systems. Branch formation is genetically encoded by transcriptional programs to create dendrite arbor morphological diversity for complex neuronal functions. In Drosophila sensory neurons, the transcription factor Abrupt represses branching via an unknown effector pathway. Targeted screening for branching-control effectors identified Centrosomin, the primary centrosome-associated protein for mitotic spindle maturation. Centrosomin repressed dendrite branch formation and was used by Abrupt to simplify arbor branching. Live imaging revealed that Centrosomin localized to the Golgi cis face and that it recruited microtubule nucleation to Golgi outposts for net retrograde microtubule polymerization away from nascent dendrite branches. Removal of Centrosomin enabled the engagement of wee Augmin activity to promote anterograde microtubule growth into the nascent branches, leading to increased branching. The findings reveal that polarized targeting of Centrosomin to Golgi outposts during elaboration of the dendrite arbor creates a local system for guiding microtubule polymerization.


Assuntos
Dendritos/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Homeodomínio/metabolismo , Microtúbulos/metabolismo , Neurogênese/fisiologia , Animais , Animais Geneticamente Modificados , Polaridade Celular , Imunoprecipitação da Cromatina , Reação em Cadeia da Polimerase , Células Receptoras Sensoriais/metabolismo
7.
J Vis Exp ; (57)2011 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-22105464

RESUMO

To understand how differences in complex cell shapes are achieved, it is important to accurately follow microtubule organization. The Drosophila larval body wall contains several cell types that are models to study cell and tissue morphogenesis. For example tracheae are used to examine tube morphogenesis(1), and the dendritic arborization (DA) sensory neurons of the Drosophila larva have become a primary system for the elucidation of general and neuron-class-specific mechanisms of dendritic differentiation(2-5) and degeneration(6). The shape of dendrite branches can vary significantly between neuron classes, and even among different branches of a single neuron(7,8). Genetic studies in DA neurons suggest that differential cytoskeletal organization can underlie morphological differences in dendritic branch shape(4,9-11). We provide a robust immunological labeling method to assay in vivo microtubule organization in DA sensory neuron dendrite arbor (Figures 1, 2, Movie 1). This protocol illustrates the dissection and immunostaining of first instar larva, a stage when active sensory neuron dendrite outgrowth and branching organization is occurring (12,13). In addition to staining sensory neurons, this method achieves robust labeling of microtubule organization in muscles (Movies 2, 3), trachea (Figure 3, Movie 3), and other body wall tissues. It is valuable for investigators wishing to analyze microtubule organization in situ in the body wall when investigating mechanisms that control tissue and cell shape.


Assuntos
Dendritos/ultraestrutura , Larva/ultraestrutura , Microtúbulos/diagnóstico por imagem , Músculos/ultraestrutura , Traqueia/crescimento & desenvolvimento , Animais , Dissecação/métodos , Drosophila/crescimento & desenvolvimento , Drosophila/ultraestrutura , Imuno-Histoquímica/métodos , Larva/crescimento & desenvolvimento , Modelos Animais , Morfogênese/fisiologia , Desenvolvimento Muscular , Células Receptoras Sensoriais/diagnóstico por imagem , Traqueia/ultraestrutura , Ultrassonografia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa