Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Am J Med Genet A ; 194(6): e63544, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38258498

RESUMO

In this pilot study, we aimed to evaluate the feasibility of whole genome sequencing (WGS) as a first-tier diagnostic test for infants hospitalized in neonatal intensive care units in the Brazilian healthcare system. The cohort presented here results from a joint collaboration between private and public hospitals in Brazil considering the initiative of a clinical laboratory to provide timely diagnosis for critically ill infants. We performed trio (proband and parents) WGS in 21 infants suspected of a genetic disease with an urgent need for diagnosis to guide medical care. Overall, the primary indication for genetic testing was dysmorphic syndromes (n = 14, 67%) followed by inborn errors of metabolism (n = 6, 29%) and skeletal dysplasias (n = 1, 5%). The diagnostic yield in our cohort was 57% (12/21) based on cases that received a definitive or likely definitive diagnostic result from WGS analysis. A total of 16 pathogenic/likely pathogenic variants and 10 variants of unknown significance were detected, and in most cases inherited from an unaffected parent. In addition, the reported variants were of different types, but mainly missense (58%) and associated with autosomal diseases (19/26); only three were associated with X-linked diseases, detected in hemizygosity in the proband an inherited from an unaffected mother. Notably, we identified 10 novel variants, absent from public genomic databases, in our cohort. Considering the entire diagnostic process, the average turnaround time from enrollment to medical report in our study was 53 days. Our findings demonstrate the remarkable utility of WGS as a diagnostic tool, elevating the potential of transformative impact since it outperforms conventional genetic tests. Here, we address the main challenges associated with implementing WGS in the medical care system in Brazil, as well as discuss the potential benefits and limitations of WGS as a diagnostic tool in the neonatal care setting.


Assuntos
Testes Genéticos , Unidades de Terapia Intensiva Neonatal , Sequenciamento Completo do Genoma , Humanos , Brasil/epidemiologia , Recém-Nascido , Masculino , Feminino , Testes Genéticos/métodos , Projetos Piloto , Lactente , Doenças Genéticas Inatas/diagnóstico , Doenças Genéticas Inatas/genética
2.
Am J Med Genet A ; : e63802, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38924610

RESUMO

Low-pass whole genome sequencing (LP-WGS) has been applied as alternative method to detect copy number variants (CNVs) in the clinical setting. Compared with chromosomal microarray analysis (CMA), the sequencing-based approach provides a similar resolution of CNV detection at a lower cost. In this study, we assessed the efficiency and reliability of LP-WGS as a more affordable alternative to CMA. A total of 1363 patients with unexplained neurodevelopmental delay/intellectual disability, autism spectrum disorders, and/or multiple congenital anomalies were enrolled. Those patients were referred from 15 nonprofit organizations and university centers located in different states in Brazil. The analysis of LP-WGS at 1x coverage (>50kb) revealed a positive testing result in 22% of the cases (304/1363), in which 219 and 85 correspond to pathogenic/likely pathogenic (P/LP) CNVs and variants of uncertain significance (VUS), respectively. The 16% (219/1363) diagnostic yield observed in our cohort is comparable to the 15%-20% reported for CMA in the literature. The use of commercial software, as demonstrated in this study, simplifies the implementation of the test in clinical settings. Particularly for countries like Brazil, where the cost of CMA presents a substantial barrier to most of the population, LP-WGS emerges as a cost-effective alternative for investigating copy number changes in cytogenetics.

3.
J Med Genet ; 60(11): 1127-1132, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37055165

RESUMO

Rothmund-Thomson syndrome (RTS) is a rare, heterogeneous autosomal recessive genodermatosis, with poikiloderma as its hallmark. It is classified into two types: type I, with biallelic variants in ANAPC1 and juvenile cataracts, and type II, with biallelic variants in RECQL4, increased cancer risk and no cataracts. We report on six Brazilian probands and two siblings of Swiss/Portuguese ancestry presenting with severe short stature, widespread poikiloderma and congenital ocular anomalies. Genomic and functional analysis revealed compound heterozygosis for a deep intronic splicing variant in trans with loss of function variants in DNA2, with reduction of the protein levels and impaired DNA double-strand break repair. The intronic variant is shared by all patients, as well as the Portuguese father of the European siblings, indicating a probable founder effect. Biallelic variants in DNA2 were previously associated with microcephalic osteodysplastic primordial dwarfism. Although the individuals reported here present a similar growth pattern, the presence of poikiloderma and ocular anomalies is unique. Thus, we have broadened the phenotypical spectrum of DNA2 mutations, incorporating clinical characteristics of RTS. Although a clear genotype-phenotype correlation cannot be definitively established at this moment, we speculate that the residual activity of the splicing variant allele could be responsible for the distinct manifestations of DNA2-related syndromes.

4.
Am J Hum Genet ; 105(4): 836-843, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31564437

RESUMO

Osteogenesis imperfecta (OI) comprises a genetically heterogeneous group of skeletal fragility diseases. Here, we report on five independent families with a progressively deforming type of OI, in whom we identified four homozygous truncation or frameshift mutations in MESD. Affected individuals had recurrent fractures and at least one had oligodontia. MESD encodes an endoplasmic reticulum (ER) chaperone protein for the canonical Wingless-related integration site (WNT) signaling receptors LRP5 and LRP6. Because complete absence of MESD causes embryonic lethality in mice, we hypothesized that the OI-associated mutations are hypomorphic alleles since these mutations occur downstream of the chaperone activity domain but upstream of ER-retention domain. This would be consistent with the clinical phenotypes of skeletal fragility and oligodontia in persons deficient for LRP5 and LRP6, respectively. When we expressed wild-type (WT) and mutant MESD in HEK293T cells, we detected WT MESD in cell lysate but not in conditioned medium, whereas the converse was true for mutant MESD. We observed that both WT and mutant MESD retained the ability to chaperone LRP5. Thus, OI-associated MESD mutations produce hypomorphic alleles whose failure to remain within the ER significantly reduces but does not completely eliminate LRP5 and LRP6 trafficking. Since these individuals have no eye abnormalities (which occur in individuals completely lacking LRP5) and have neither limb nor brain patterning defects (both of which occur in mice completely lacking LRP6), we infer that bone mass accrual and dental patterning are more sensitive to reduced canonical WNT signaling than are other developmental processes. Biologic agents that can increase LRP5 and LRP6-mediated WNT signaling could benefit individuals with MESD-associated OI.


Assuntos
Chaperonas Moleculares/genética , Mutação , Osteogênese Imperfeita/genética , Animais , Feminino , Genes Recessivos , Células HEK293 , Humanos , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Masculino , Camundongos , Linhagem , Fenótipo , Via de Sinalização Wnt
5.
Am J Hum Genet ; 104(5): 925-935, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-30982609

RESUMO

Colony stimulating factor 1 receptor (CSF1R) plays key roles in regulating development and function of the monocyte/macrophage lineage, including microglia and osteoclasts. Mono-allelic mutations of CSF1R are known to cause hereditary diffuse leukoencephalopathy with spheroids (HDLS), an adult-onset progressive neurodegenerative disorder. Here, we report seven affected individuals from three unrelated families who had bi-allelic CSF1R mutations. In addition to early-onset HDLS-like neurological disorders, they had brain malformations and skeletal dysplasia compatible to dysosteosclerosis (DOS) or Pyle disease. We identified five CSF1R mutations that were homozygous or compound heterozygous in these affected individuals. Two of them were deep intronic mutations resulting in abnormal inclusion of intron sequences in the mRNA. Compared with Csf1r-null mice, the skeletal and neural phenotypes of the affected individuals appeared milder and variable, suggesting that at least one of the mutations in each affected individual is hypomorphic. Our results characterized a unique human skeletal phenotype caused by CSF1R deficiency and implied that bi-allelic CSF1R mutations cause a spectrum of neurological and skeletal disorders, probably depending on the residual CSF1R function.


Assuntos
Encéfalo/anormalidades , Leucoencefalopatias/etiologia , Mutação , Osteocondrodisplasias/etiologia , Osteosclerose/etiologia , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Adolescente , Adulto , Alelos , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Pré-Escolar , Feminino , Humanos , Leucoencefalopatias/patologia , Masculino , Camundongos , Camundongos Knockout , Osteocondrodisplasias/patologia , Osteosclerose/patologia , Fenótipo , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/fisiologia , Adulto Jovem
6.
Am J Hum Genet ; 104(3): 422-438, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30773277

RESUMO

SPONASTRIME dysplasia is an autosomal-recessive spondyloepimetaphyseal dysplasia characterized by spine (spondylar) abnormalities, midface hypoplasia with a depressed nasal bridge, metaphyseal striations, and disproportionate short stature. Scoliosis, coxa vara, childhood cataracts, short dental roots, and hypogammaglobulinemia have also been reported in this disorder. Although an autosomal-recessive inheritance pattern has been hypothesized, pathogenic variants in a specific gene have not been discovered in individuals with SPONASTRIME dysplasia. Here, we identified bi-allelic variants in TONSL, which encodes the Tonsoku-like DNA repair protein, in nine subjects (from eight families) with SPONASTRIME dysplasia, and four subjects (from three families) with short stature of varied severity and spondylometaphyseal dysplasia with or without immunologic and hematologic abnormalities, but no definitive metaphyseal striations at diagnosis. The finding of early embryonic lethality in a Tonsl-/- murine model and the discovery of reduced length, spinal abnormalities, reduced numbers of neutrophils, and early lethality in a tonsl-/- zebrafish model both support the hypomorphic nature of the identified TONSL variants. Moreover, functional studies revealed increased amounts of spontaneous replication fork stalling and chromosomal aberrations, as well as fewer camptothecin (CPT)-induced RAD51 foci in subject-derived cell lines. Importantly, these cellular defects were rescued upon re-expression of wild-type (WT) TONSL; this rescue is consistent with the hypothesis that hypomorphic TONSL variants are pathogenic. Overall, our studies in humans, mice, zebrafish, and subject-derived cell lines confirm that pathogenic variants in TONSL impair DNA replication and homologous recombination-dependent repair processes, and they lead to a spectrum of skeletal dysplasia phenotypes with numerous extra-skeletal manifestations.


Assuntos
Instabilidade Cromossômica , Dano ao DNA , Variação Genética , Anormalidades Musculoesqueléticas/patologia , NF-kappa B/genética , Osteocondrodisplasias/patologia , Adolescente , Adulto , Alelos , Animais , Células Cultivadas , Criança , Pré-Escolar , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Estudos de Associação Genética , Humanos , Camundongos , Camundongos Knockout , Anormalidades Musculoesqueléticas/genética , Osteocondrodisplasias/genética , Sequenciamento do Exoma , Adulto Jovem , Peixe-Zebra
7.
Am J Med Genet A ; 188(5): 1545-1549, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35019224

RESUMO

Osteogenesis imperfecta (OI) is a rare low-bone mass skeletal Mendelian disorder characterized by bone fragility leading to bone fractures, with deformities and stunted growth in the more severe phenotypes. Other common, nonskeletal findings include blue sclerae and dentinogenesis imperfecta. It is caused mainly by quantitative or structural defects in type I collagen, although dysregulation of different signaling pathways that play a role in bone morphogenesis has been described to be associated with a small fraction of individuals with OI. Recently, a homozygous variant in the translation start site of CCDC134, showing increased activation of the RAS/MAPK signaling pathway, has been reported in three families of Moroccan origin with a severe, deforming form of OI. We report on a 9-year-old Brazilian boy, harboring the same homozygous variant in CCDC134, also presenting severe bone involvement. This report contributes to the phenotypic delineation of this novel autosomal recessive form of OI, which presents with high prevalence of nonunion fractures considered rare events in OI in general. In addition, it expands the phenotype to include base skull anomalies, potentially leading to serious complications, as seen in severe forms of OI. A poor response to bisphosphonate therapy was observed in these individuals. As the variant in CCDC134 leads to dysregulation of the RAS/MAPK signaling pathway, drugs targeted to this pathway could be an alternative to achieve a better management of these individuals.


Assuntos
Fraturas Ósseas , Osteogênese Imperfeita , Osso e Ossos , Colágeno Tipo I/genética , Fraturas Ósseas/complicações , Homozigoto , Humanos , Proteínas de Membrana/genética , Osteogênese Imperfeita/complicações , Fenótipo
8.
Int J Mol Sci ; 23(19)2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36233295

RESUMO

Nemaline myopathy (NM), a structural congenital myopathy, presents a significant clinical and genetic heterogeneity. Here, we compiled molecular and clinical data of 30 Brazilian patients from 25 unrelated families. Next-generation sequencing was able to genetically classify all patients: sixteen families (64%) with mutation in NEB, five (20%) in ACTA1, two (8%) in KLHL40, and one in TPM2 (4%) and TPM3 (4%). In the NEB-related families, 25 different variants, 11 of them novel, were identified; splice site (10/25) and frame shift (9/25) mutations were the most common. Mutation c.24579 G>C was recurrent in three unrelated patients from the same region, suggesting a common ancestor. Clinically, the "typical" form was the more frequent and caused by mutations in the different NM genes. Phenotypic heterogeneity was observed among patients with mutations in the same gene. Respiratory involvement was very common and often out of proportion with limb weakness. Muscle MRI patterns showed variability within the forms and genes, which was related to the severity of the weakness. Considering the high frequency of NEB mutations and the complexity of this gene, NGS tools should be combined with CNV identification, especially in patients with a likely non-identified second mutation.


Assuntos
Miopatias da Nemalina , Miotonia Congênita , Brasil , Humanos , Proteínas Musculares/genética , Músculo Esquelético , Mutação , Miopatias da Nemalina/genética
9.
Am J Med Genet C Semin Med Genet ; 187(3): 357-363, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34189818

RESUMO

Diagnosis of individuals affected by monogenic disorders was significantly improved by next-generation sequencing targeting clinically relevant genes. Whole exomes yield a large number of variants that require several filtering steps, prioritization, and pathogenicity classification. Among the criteria recommended by ACMG, those that rely on population databases critically affect analyses of individuals with underrepresented ancestries. Population-specific allelic frequencies need consideration when characterizing potential deleteriousness of variants. An orthogonal input for classification is annotation of variants previously classified as pathogenic as a criterion that provide supporting evidence widely sourced at ClinVar. We used a whole-genome dataset from a census-based cohort of 1,171 elderly individuals from São Paulo, Brazil, highly admixed, and unaffected by severe monogenic disorders, to investigate if pathogenic assertions in ClinVar are enriched with higher proportions of European ancestry, indicating bias. Potential loss of function (pLOF) variants were filtered from 4,250 genes associated with Mendelian disorders and annotated with ClinVar assertions. Over 1,800 single nucleotide pLOF variants were included, 381 had non-benign assertions. Among carriers (N = 463), average European ancestry was significantly higher than noncarriers (N = 708; p = .011). pLOFs in genomic contexts of non-European local ancestries were nearly three times less likely to have any ClinVar entry (OR = 0.353; p <.0001). Independent pathogenicity assertions are useful for variant classification in molecular diagnosis. However, European overrepresentation of assertions can promote distortions when classifying variants in non-European individuals, even in admixed samples with a relatively high proportion of European ancestry. The investigation and deposit of clinically relevant findings of diverse populations is fundamental improve this scenario.


Assuntos
Variação Genética , Genômica , Idoso , Brasil , Exoma , Sequenciamento de Nucleotídeos em Larga Escala , Humanos
10.
Int J Obes (Lond) ; 45(5): 1017-1029, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33633342

RESUMO

BACKGROUND/OBJECTIVES: Admixed populations are a resource to study the global genetic architecture of complex phenotypes, which is critical, considering that non-European populations are severely underrepresented in genomic studies. Here, we study the genetic architecture of BMI in children, young adults, and elderly individuals from the admixed population of Brazil. SUBJECTS/METHODS: Leveraging admixture in Brazilians, whose chromosomes are mosaics of fragments of Native American, European, and African origins, we used genome-wide data to perform admixture mapping/fine-mapping of body mass index (BMI) in three Brazilian population-based cohorts from Northeast (Salvador), Southeast (Bambuí), and South (Pelotas). RESULTS: We found significant associations with African-associated alleles in children from Salvador (PALD1 and ZMIZ1 genes), and in young adults from Pelotas (NOD2 and MTUS2 genes). More importantly, in Pelotas, rs114066381, mapped in a potential regulatory region, is significantly associated only in females (p = 2.76e-06). This variant is rare in Europeans but with frequencies of ~3% in West Africa and has a strong female-specific effect (95% CI: 2.32-5.65 kg/m2 per each A allele). We confirmed this sex-specific association and replicated its strong effect for an adjusted fat mass index in the same Pelotas cohort, and for BMI in another Brazilian cohort from São Paulo (Southeast Brazil). A meta-analysis confirmed the significant association. Remarkably, we observed that while the frequency of rs114066381-A allele ranges from 0.8 to 2.1% in the studied populations, it attains ~9% among women with morbid obesity from Pelotas, São Paulo, and Bambuí. The effect size of rs114066381 is at least five times higher than the FTO SNPs rs9939609 and rs1558902, already emblematic for their high effects. CONCLUSIONS: We identified six candidate SNPs associated with BMI. rs114066381 stands out for its high effect that was replicated and its high frequency in women with morbid obesity. We demonstrate how admixed populations are a source of new relevant phenotype-associated genetic variants.


Assuntos
Índice de Massa Corporal , Genética Populacional , Polimorfismo de Nucleotídeo Único , Idoso , Idoso de 80 Anos ou mais , Alelos , Brasil , Criança , Pré-Escolar , Mapeamento Cromossômico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Sequências Reguladoras de Ácido Nucleico , Fatores Sexuais , Adulto Jovem
11.
Clin Genet ; 100(5): 615-623, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34341987

RESUMO

Congenital limb deficiency (CLD), one of the most common congenital anomalies, is characterized by hypoplasia/aplasia of one or more limb bones and can be isolated or syndromic. The etiology in CLD is heterogeneous, including environmental and genetic factors. A fraction remains with no etiological factor identified. We report the study of 44 Brazilian individuals presenting isolated or syndromic CLD, mainly with longitudinal defects. Genetic investigation included particularly next-generation sequencing (NGS) and/or chromosomal microarray. The overall diagnostic yield was 45.7%, ranging from 60.9% in the syndromic to 16.7% in the non-syndromic group. In TAR syndrome, a common variant in 3´UTR of RBM8A, in trans with 1q21.1 microdeletion, was detected, corroborating the importance of this recently reported variant in individuals of African ancestry. NGS established a diagnosis in three individuals in syndromes recently reported or still under delineation (an acrofacial dysostosis, Coats plus and Verheij syndromes), suggesting a broader phenotypic spectrum in these disorders. Although a low rate of molecular detection in non-syndromic forms was observed, it is still possible that variants in non-coding regions and small CNVs, not detected by the techniques applied in this study, could play a role in the etiology of CLD.


Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Deformidades Congênitas dos Membros/diagnóstico , Deformidades Congênitas dos Membros/genética , Fenótipo , Brasil , Pré-Escolar , Consanguinidade , Feminino , Estudos de Associação Genética/métodos , Testes Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Recém-Nascido , Masculino , Linhagem , Análise de Sequência de DNA , Síndrome
12.
Am J Med Genet A ; 185(10): 3099-3103, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34080768

RESUMO

Noonan syndrome (NS) is a Mendelian phenotype, member of a group of disorders sharing neurocardiofaciocutaneous involvement, known as RASopathies, caused by germline variants in genes coding for components of the RAS/MAPK signaling pathway. Recently, a novel gene of the RAS family (MRAS) was reported to be associated with NS in five children, all of them presenting, among the cardinal features of NS, the same cardiac finding, hypertrophic cardiomyopathy (HCM). We report on a 2-month-old infant boy also presenting this cardiac anomaly that evolved to a fatal outcome after a surgical myectomy. In addition, a thick walled left ventricle apical aneurysm, rarely described in NS, was also disclosed. Next-generation sequencing revealed a missense, previously reported variant in MRAS (p.Thr68Ile). This report reinforces the high frequency of HCM among individuals harboring MRAS variants, contrasting to the 20% overall prevalence of this cardiac anomaly in NS. Thus, these preliminary data suggest that variants in MRAS per se are high risk factors for the development of an early, severe HCM, mostly of them with left ventricle outflow tract obstruction, with poor prognosis. Because of the severity of the cardiac involvement, other clinical findings could not be addressed in detail. Therefore, long-term follow-up of these individuals and further descriptions are required to fully understand the complete phenotypic spectrum of NS associated with MRAS germline variants, including if these individuals present an increased risk for cancer.


Assuntos
Cardiomiopatia Hipertrófica/genética , Cardiopatias Congênitas/genética , Síndrome de Noonan/genética , Proteínas ras/genética , Adolescente , Cardiomiopatia Hipertrófica/diagnóstico , Cardiomiopatia Hipertrófica/patologia , Criança , Pré-Escolar , Feminino , Cardiopatias Congênitas/diagnóstico , Cardiopatias Congênitas/patologia , Heterozigoto , Humanos , Lactente , Sistema de Sinalização das MAP Quinases/genética , Masculino , Mutação/genética , Síndrome de Noonan/diagnóstico , Síndrome de Noonan/patologia
13.
Am J Med Genet A ; 185(12): 3916-3923, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34405946

RESUMO

Sotos syndrome is characterized by overgrowth starting before birth through childhood with intellectual disability and craniofacial anomalies. The majority of patients are large for gestational age with developmental delay or intellectual disability. The majority of cases are caused by pathogenic variants in NSD1. The most consistent physical features in this disorder are facial dysmorphisms including prominent forehead, downslanted palpebral fissures, prognathism with a pointed chin, and a long and narrow face. We present a follow-up to a cohort of 11 individuals found to harbor heterozygous, pathogenic, or likely pathogenic variants in NSD1. We analyzed the facial dysmorphisms and the condition using retrospective over 20 years. Among these patients, followed in our medical genetics outpatient clinic for variable periods of time, all had a phenotype compatible with the characteristic Sotos syndrome facial features, which evolved with time and became superimposed with natural aging modifications. We present here a long-term follow-up of facial features of Brazilian patients with molecularly confirmed Sotos syndrome. In this largest Brazilian cohort of molecularly confirmed patients with Sotos syndrome to date, we provide a careful description of the facial phenotype, which becomes less pronounced with aging and possibly more difficult to recognize in adults. These results may have broad clinical implications for diagnosis and add to the global clinical delineation of this condition.


Assuntos
Anormalidades Craniofaciais/genética , Predisposição Genética para Doença , Histona-Lisina N-Metiltransferase/genética , Síndrome de Sotos/genética , Adolescente , Brasil/epidemiologia , Criança , Pré-Escolar , Anormalidades Craniofaciais/diagnóstico por imagem , Anormalidades Craniofaciais/fisiopatologia , Deficiências do Desenvolvimento/complicações , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/fisiopatologia , Face/diagnóstico por imagem , Face/fisiopatologia , Feminino , Seguimentos , Transtornos do Crescimento/complicações , Transtornos do Crescimento/genética , Transtornos do Crescimento/fisiopatologia , Humanos , Lactente , Deficiência Intelectual/complicações , Deficiência Intelectual/genética , Deficiência Intelectual/fisiopatologia , Masculino , Fenótipo , Síndrome de Sotos/diagnóstico por imagem , Síndrome de Sotos/fisiopatologia
14.
BMC Genomics ; 21(1): 446, 2020 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-32600246

RESUMO

BACKGROUND: Approximately 5% of the human genome shows common structural variation, which is enriched for genes involved in the immune response and cell-cell interactions. A well-established region of extensive structural variation is the glycophorin gene cluster, comprising three tandemly-repeated regions about 120 kb in length and carrying the highly homologous genes GYPA, GYPB and GYPE. Glycophorin A (encoded by GYPA) and glycophorin B (encoded by GYPB) are glycoproteins present at high levels on the surface of erythrocytes, and they have been suggested to act as decoy receptors for viral pathogens. They are receptors for the invasion of the protist parasite Plasmodium falciparum, a causative agent of malaria. A particular complex structural variant, called DUP4, creates a GYPB-GYPA fusion gene known to confer resistance to malaria. Many other structural variants exist across the glycophorin gene cluster, and they remain poorly characterised. RESULTS: Here, we analyse sequences from 3234 diploid genomes from across the world for structural variation at the glycophorin locus, confirming 15 variants in the 1000 Genomes project cohort, discovering 9 new variants, and characterising a selection of these variants using fibre-FISH and breakpoint mapping at the sequence level. We identify variants predicted to create novel fusion genes and a common inversion duplication variant at appreciable frequencies in West Africans. We show that almost all variants can be explained by non-allelic homologous recombination and by comparing the structural variant breakpoints with recombination hotspot maps, confirm the importance of a particular meiotic recombination hotspot on structural variant formation in this region. CONCLUSIONS: We identify and validate large structural variants in the human glycophorin A-B-E gene cluster which may be associated with different clinical aspects of malaria.


Assuntos
Variação Estrutural do Genoma , Glicoforinas/genética , Malária Falciparum/genética , Pontos de Quebra do Cromossomo , Mapeamento Cromossômico , Bases de Dados Genéticas , Resistência à Doença , Humanos , Hibridização in Situ Fluorescente , Alinhamento de Sequência , Sequenciamento Completo do Genoma
15.
Am J Med Genet C Semin Med Genet ; 184(4): 896-911, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33128510

RESUMO

We report the clinical and molecular data of a large cohort comprising 242 individuals with RASopathies, from a single Tertiary Center in Brazil, the largest study from Latin America. Noonan syndrome represented 76% of the subjects, with heterozygous variants in nine different genes, mainly PTPN11, SOS1, RAF1, LZTR1, and RIT1, detected by Sanger and next-generation sequencing. The latter was applied to 126 individuals, with a positive yield of 63% in genes of the RAS/MAPK cascade. We present evidence that there are some allelic differences in PTPN11 across distinct populations. We highlight the clinical aspects that pose more medical concerns, such as the cardiac anomalies, bleeding diathesis and proliferative lesions. The genotype-phenotype analysis between the RASopathies showed statistically significant differences in some cardinal features, such as craniofacial and cardiac anomalies, the latter also statistically significant for different genes in Noonan syndrome. We present two individuals with a Noonan syndrome phenotype, one with an atypical, structural cardiac defect, harboring variants in genes mainly associated with isolated hypertrophic cardiomyopathy and discuss the role of these variants in their phenotype.


Assuntos
Síndrome de Noonan , Brasil , Genótipo , Humanos , Mutação , Síndrome de Noonan/genética , Fenótipo
16.
Am J Hum Genet ; 101(5): 815-823, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29100092

RESUMO

Fibronectin is a master organizer of extracellular matrices (ECMs) and promotes the assembly of collagens, fibrillin-1, and other proteins. It is also known to play roles in skeletal tissues through its secretion by osteoblasts, chondrocytes, and mesenchymal cells. Spondylometaphyseal dysplasias (SMDs) comprise a diverse group of skeletal dysplasias and often manifest as short stature, growth-plate irregularities, and vertebral anomalies, such as scoliosis. By comparing the exomes of individuals with SMD with the radiographic appearance of "corner fractures" at metaphyses, we identified three individuals with fibronectin (FN1) variants affecting highly conserved residues. Furthermore, using matching tools and the SkelDys emailing list, we identified other individuals with de novo FN1 variants and a similar phenotype. The severe scoliosis in most individuals and rare developmental coxa vara distinguish individuals with FN1 mutations from those with classical Sutcliffe-type SMD. To study functional consequences of these FN1 mutations on the protein level, we introduced three disease-associated missense variants (p.Cys87Phe [c.260G>T], p.Tyr240Asp [c.718T>G], and p.Cys260Gly [c.778T>G]) into a recombinant secreted N-terminal 70 kDa fragment (rF70K) and the full-length fibronectin (rFN). The wild-type rF70K and rFN were secreted into the culture medium, whereas all mutant proteins were either not secreted or secreted at significantly lower amounts. Immunofluorescence analysis demonstrated increased intracellular retention of the mutant proteins. In summary, FN1 mutations that cause defective fibronectin secretion are found in SMD, and we thus provide additional evidence for a critical function of fibronectin in cartilage and bone.


Assuntos
Fibronectinas/genética , Fraturas Ósseas/genética , Mutação/genética , Osteocondrodisplasias/genética , Adolescente , Adulto , Doenças do Desenvolvimento Ósseo/genética , Osso e Ossos/patologia , Cartilagem/patologia , Criança , Pré-Escolar , Exoma/genética , Feminino , Humanos , Masculino , Fenótipo , Escoliose/genética
17.
Brain ; 141(8): 2289-2298, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30010796

RESUMO

Defects in iron-sulphur [Fe-S] cluster biogenesis are increasingly recognized as causing neurological disease. Mutations in a number of genes that encode proteins involved in mitochondrial [Fe-S] protein assembly lead to complex neurological phenotypes. One class of proteins essential in the early cluster assembly are ferredoxins. FDX2 is ubiquitously expressed and is essential in the de novo formation of [2Fe-2S] clusters in humans. We describe and genetically define a novel complex neurological syndrome identified in two Brazilian families, with a novel homozygous mutation in FDX2. Patients were clinically evaluated, underwent MRI, nerve conduction studies, EMG and muscle biopsy. To define the genetic aetiology, a combination of homozygosity mapping and whole exome sequencing was performed. We identified six patients from two apparently unrelated families with autosomal recessive inheritance of a complex neurological phenotype involving optic atrophy and nystagmus developing by age 3, followed by myopathy and recurrent episodes of cramps, myalgia and muscle weakness in the first or second decade of life. Sensory-motor axonal neuropathy led to progressive distal weakness. MRI disclosed a reversible or partially reversible leukoencephalopathy. Muscle biopsy demonstrated an unusual pattern of regional succinate dehydrogenase and cytochrome c oxidase deficiency with iron accumulation. The phenotype was mapped in both families to the same homozygous missense mutation in FDX2 (c.431C > T, p.P144L). The deleterious effect of the mutation was validated by real-time reverse transcription polymerase chain reaction and western blot analysis, which demonstrated normal expression of FDX2 mRNA but severely reduced expression of FDX2 protein in muscle tissue. This study describes a novel complex neurological phenotype with unusual MRI and muscle biopsy features, conclusively mapped to a mutation in FDX2, which encodes a ubiquitously expressed mitochondrial ferredoxin essential for early [Fe-S] cluster biogenesis.


Assuntos
Ferredoxinas/genética , Ferredoxinas/fisiologia , Adolescente , Adulto , Brasil , Criança , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Homozigoto , Humanos , Ferro/metabolismo , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/fisiologia , Leucoencefalopatias/metabolismo , Masculino , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Doenças Musculares/genética , Mialgia/genética , Atrofia Óptica/genética , Linhagem , Fenótipo , Succinato Desidrogenase/metabolismo , Síndrome , Sequenciamento do Exoma
18.
Hum Mutat ; 39(10): 1372-1383, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29969175

RESUMO

The Reelin-DAB1 signaling pathway plays a crucial role in regulating neuronal migration and synapse function. Although many rare heterozygous variants in the Reelin gene (RELN) have been identified in patients with autism spectrum disorder (ASD), most variants are still of unknown clinical significance. Also, genetic data suggest that heterozygous variants in RELN alone appear to be insufficient to cause ASD. Here, we describe the identification and functional characterization of rare compound heterozygous missense variants in RELN in a patient with ASD in whom we have previously reported hyperfunctional mTORC1 signaling of yet unknown etiology. Using iPSC-derived neural progenitor cells (NPCs) from this patient, we provide experimental evidence that the identified variants are deleterious and lead to diminished Reelin secretion and impaired Reelin-DAB1 signal transduction. Also, our results suggest that mTORC1 pathway overactivation may function as a second hit event contributing to downregulation of the Reelin-DAB1 cascade in patient-derived NPCs, and that inhibition of mTORC1 by rapamycin attenuates Reelin-DAB1 signaling impairment. Taken together, our findings point to an abnormal interplay between Reelin-DAB1 and mTORC1 networks in nonsyndromic ASD.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Variação Genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/química , Alelos , Transtorno do Espectro Autista/diagnóstico , Biomarcadores , Estudos de Casos e Controles , Moléculas de Adesão Celular Neuronais/química , Criança , Pré-Escolar , Proteínas da Matriz Extracelular/química , Feminino , Expressão Gênica , Heterozigoto , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Modelos Moleculares , Proteínas do Tecido Nervoso/química , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Conformação Proteica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Reelina , Serina Endopeptidases/química , Relação Estrutura-Atividade , Serina-Treonina Quinases TOR/metabolismo
19.
BMC Med Genet ; 19(1): 73, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29739340

RESUMO

BACKGROUND: Mutations in the SLC26A4 gene are associated with Pendred syndrome and autosomal recessive non-syndromic deafness (DFNB4). Both disorders have similar audiologic characteristics: bilateral hearing loss, often severe or profound, which may be associated with abnormalities of the inner ear, such as dilatation of the vestibular aqueduct or Mondini dysplasia. But, in Pendred syndrome (OMIM #274600), with autosomal recessive inheritance, besides congenital sensorineural deafness, goiter or thyroid dysfunctions are frequently present. The aim of this study was to determine whether mutations in SLC26A4 are a frequent cause of hereditary deafness in Brazilian patients. METHODS: Microsatellite haplotypes linked to SLC26A4 were investigated in 68 families presenting autosomal recessive non-syndromic deafness. In the probands of the 16 families presenting segregation consistent with linkage to SLC26A4, Sanger sequencing of the 20 coding exons was performed. In an additional sample of 15 individuals with suspected Pendred syndrome, because of the presence of hypothyroidism or cochleovestibular malformations, the SLC26A4 gene coding region was also sequenced. RESULTS: In two of the 16 families with indication of linkage to SLC26A4, the probands were found to be compound heterozygotes for probably pathogenic different mutations: three novel (c.1003 T > G (p. F335 V), c.1553G > A (p.W518X), c.2235 + 2 T > C (IVS19 + 2 T > C), and one already described, c.84C > A (p.S28R). Two of the 15 individuals with suspected Pendred syndrome because of hypothyreoidism or cochleovestibular malformations were monoallelic for likely pathogenic mutations: a splice mutation (IVS7 + 2 T > C) and the previously described c.1246A > C (p.T416P). Pathogenic copy number variations were excluded in the monoallelic cases and in those with normal results after Sanger sequencing. Additional mutations in the SLC26A4 gene or other definite molecular cause for deafness were not identified in the monoallelic patients, after exome sequencing. CONCLUSIONS: Biallelic pathogenic mutations in SLC26A4 explained ~ 3% of cases selected because of autosomal recessive deafness. Monoallelic mutations were present in ~ 13% of isolated cases of deafness with cochleovestibular malformations or suspected Pendred syndrome. These data reinforce the importance of mutation screening of SLC26A4 in Brazilian subjects and highlight the elevated frequency of monoallelic patients.


Assuntos
Bócio Nodular/genética , Perda Auditiva Neurossensorial/genética , Mutação , Análise de Sequência de DNA/métodos , Transportadores de Sulfato/genética , Brasil , Análise Mutacional de DNA , Feminino , Haplótipos , Humanos , Masculino , Repetições de Microssatélites , Linhagem
20.
Genet Mol Biol ; 41(1): 85-91, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29473937

RESUMO

CHIME syndrome is an extremely rare autosomal recessive multisystemic disorder caused by mutations in PIGL. PIGL is an endoplasmic reticulum localized enzyme that catalyzes the second step of glycosylphosphatidylinositol (GPI) biosynthesis, which plays a role in the anchorage of cell-surface proteins including receptors, enzymes, and adhesion molecules. Germline mutations in other members of GPI and Post GPI Attachment to Proteins (PGAP) family genes have been described and constitute a group of diseases within the congenital disorders of glycosylation. Patients in this group often present alkaline phosphatase serum levels abnormalities and neurological symptoms. We report a CHIME syndrome patient who harbors a missense mutation c.500T > C (p.Leu167Pro) and a large deletion involving the 5' untranslated region and part of exon 1 of PIGL. In CHIME syndrome, a recurrent missense mutation c.500T > C (p.Leu167Pro) is found in the majority of patients, associated with a null mutation in the other allele, including an overrepresentation of large deletions. The latter are not detected by the standard analysis in sequencing techniques, including next-generation sequencing. Thus, in individuals with a clinical diagnosis of CHIME syndrome in which only one mutation is found, an active search for a large deletion should be sought.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa