RESUMO
Synthetic biology is creating genetically engineered organisms at an increasing rate for many potentially valuable applications, but this potential comes with the risk of misuse or accidental release. To begin to address this issue, we have developed a system called GUARDIAN that can automatically detect signatures of engineering in DNA sequencing data, and we have conducted a blinded test of this system using a curated Test and Evaluation (T&E) data set. GUARDIAN uses an ensemble approach based on the guiding principle that no single approach is likely to be able to detect engineering with perfect accuracy. Critically, ensembling enables GUARDIAN to detect sequence inserts in 13 target organisms with a high degree of specificity that requires no subject matter expert (SME) review.
Assuntos
DNA , Análise de Sequência de DNA , DNA/genéticaRESUMO
Flow cytometry is a powerful method for high-throughput precision measurement of cell fluorescence and size. Effective use of this tool for quantification of synthetic biology devices and circuits, however, generally requires careful application of complex multistage workflows for calibration, filtering, and analysis with appropriate statistics. The TASBE Flow Analytics package provides a free, open, and accessible implementation of such workflows in a form designed for high-throughput analysis of large synthetic biology data sets. Given a set of experimental samples and controls, this package can process them to output calibrated data, quantitative analyses and comparisons, automatically generated figures, and detailed debugging and diagnostic reports in both human-readable and machine-readable forms. TASBE Flow Analytics can be used through a simple user-friendly interactive Excel interface, as a library supporting Matlab, Octave, or Python interactive sessions, or as a component integrated into automated workflows.
Assuntos
Biologia Computacional/métodos , Citometria de Fluxo/métodos , Calibragem , Humanos , Software , Interface Usuário-ComputadorRESUMO
Our capabilities for systematic design and engineering of biological systems are rapidly increasing. Effectively engineering such systems, however, requires the synthesis of a rapidly expanding and changing complex body of knowledge, protocols, and methodologies. Many of the problems in managing this complexity, however, appear susceptible to being addressed by artificial intelligence (AI) techniques, i.e., methods enabling computers to represent, acquire, and employ knowledge. Such methods can be employed to automate physical and informational "routine" work and thus better allow humans to focus their attention on the deeper scientific and engineering issues. This paper examines the potential impact of AI on the engineering of biological organisms through the lens of a typical organism engineering workflow. We identify a number of key opportunities for significant impact, as well as challenges that must be overcome.
Assuntos
Inteligência Artificial , Bioengenharia/métodos , Biologia Sintética/métodos , Biologia de Sistemas/métodos , Automação Laboratorial/métodos , Biologia Computacional/métodos , Biologia Computacional/tendências , Humanos , Modelos TeóricosRESUMO
A long-standing goal of synthetic biology is to rapidly engineer new regulatory circuits from simpler devices. As circuit complexity grows, it becomes increasingly important to guide design with quantitative models, but previous efforts have been hindered by lack of predictive accuracy. To address this, we developed Empirical Quantitative Incremental Prediction (EQuIP), a new method for accurate prediction of genetic regulatory network behavior from detailed characterizations of their components. In EQuIP, precisely calibrated time-series and dosage-response assays are used to construct hybrid phenotypic/mechanistic models of regulatory processes. This hybrid method ensures that model parameters match observable phenomena, using phenotypic formulation where current hypotheses about biological mechanisms do not agree closely with experimental observations. We demonstrate EQuIP's precision at predicting distributions of cell behaviors for six transcriptional cascades and three feed-forward circuits in mammalian cells. Our cascade predictions have only 1.6-fold mean error over a 261-fold mean range of fluorescence variation, owing primarily to calibrated measurements and piecewise-linear models. Predictions for three feed-forward circuits had a 2.0-fold mean error on a 333-fold mean range, further demonstrating that EQuIP can scale to more complex systems. Such accurate predictions will foster reliable forward engineering of complex biological circuits from libraries of standardized devices.
Assuntos
Biologia Sintética/métodos , Doxiciclina/toxicidade , Citometria de Fluxo , Redes Reguladoras de Genes/efeitos dos fármacos , Células HEK293 , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismoRESUMO
Raising the level of abstraction for synthetic biology design requires solving several challenging problems, including mapping abstract designs to DNA sequences. In this paper we present the first formalism and algorithms to address this problem. The key steps of this transformation are feature matching, signal matching, and part matching. Feature matching ensures that the mapping satisfies the regulatory relationships in the abstract design. Signal matching ensures that the expression levels of functional units are compatible. Finally, part matching finds a DNA part sequence that can implement the design. Our software tool MatchMaker implements these three steps.
Assuntos
Redes Reguladoras de Genes , Algoritmos , DNA/genética , Modelos Genéticos , Software , Biologia Sintética/estatística & dados numéricosRESUMO
We present a workflow for the design and production of biological networks from high-level program specifications. The workflow is based on a sequence of intermediate models that incrementally translate high-level specifications into DNA samples that implement them. We identify algorithms for translating between adjacent models and implement them as a set of software tools, organized into a four-stage toolchain: Specification, Compilation, Part Assignment, and Assembly. The specification stage begins with a Boolean logic computation specified in the Proto programming language. The compilation stage uses a library of network motifs and cellular platforms, also specified in Proto, to transform the program into an optimized Abstract Genetic Regulatory Network (AGRN) that implements the programmed behavior. The part assignment stage assigns DNA parts to the AGRN, drawing the parts from a database for the target cellular platform, to create a DNA sequence implementing the AGRN. Finally, the assembly stage computes an optimized assembly plan to create the DNA sequence from available part samples, yielding a protocol for producing a sample of engineered plasmids with robotics assistance. Our workflow is the first to automate the production of biological networks from a high-level program specification. Furthermore, the workflow's modular design allows the same program to be realized on different cellular platforms simply by swapping workflow configurations. We validated our workflow by specifying a small-molecule sensor-reporter program and verifying the resulting plasmids in both HEK 293 mammalian cells and in E. coli bacterial cells.