RESUMO
Rs671 in the aldehyde dehydrogenase 2 gene (ALDH2) is the cause of Asian alcohol flushing response after drinking. ALDH2 detoxifies endogenous aldehydes, which are the major source of DNA damage repaired by the Fanconi anemia pathway. Here, we show that the rs671 defective allele in combination with mutations in the alcohol dehydrogenase 5 gene, which encodes formaldehyde dehydrogenase (ADH5FDH ), causes a previously unidentified disorder, AMeD (aplastic anemia, mental retardation, and dwarfism) syndrome. Cellular studies revealed that a decrease in the formaldehyde tolerance underlies a loss of differentiation and proliferation capacity of hematopoietic stem cells. Moreover, Adh5-/-Aldh2 E506K/E506K double-deficient mice recapitulated key clinical features of AMeDS, showing short life span, dwarfism, and hematopoietic failure. Collectively, our results suggest that the combined deficiency of formaldehyde clearance mechanisms leads to the complex clinical features due to overload of formaldehyde-induced DNA damage, thereby saturation of DNA repair processes.
RESUMO
The effect on the reproductive system and fertility of living in a space environment remains unclear. Here, we caged 12 male mice under artificial gravity (≈1 gravity) (AG) or microgravity (MG) in the International Space Station (ISS) for 35 days, and characterized the male reproductive organs (testes, epididymides, and accessory glands) after their return to earth. Mice caged on earth during the 35 days served as a "ground" control (GC). Only a decrease in accessory gland weight was detected in AG and MG males; however, none of the reproductive organs showed any overt microscopic defects or changes in gene expression as determined by RNA-seq. The cauda epididymal spermatozoa from AG and MG mice could fertilize oocytes in vitro at comparable levels as GC males. When the fertilized eggs were transferred into pseudo-pregnant females, there was no significant difference in pups delivered (pups/transferred eggs) among GC, AG, and MG spermatozoa. In addition, the growth rates and fecundity of the obtained pups were comparable among all groups. We conclude that short-term stays in outer space do not cause overt defects in the physiological function of male reproductive organs, sperm function, and offspring viability.
Assuntos
Fertilidade/fisiologia , Fertilização/fisiologia , Animais , Epididimo/fisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oócitos/fisiologia , Gravidez , Voo Espacial , Espermatozoides/fisiologia , Testículo/fisiologia , Zigoto/fisiologiaRESUMO
The Japan Aerospace Exploration Agency developed the mouse Habitat Cage Unit (HCU) for installation in the Cell Biology Experiment Facility (CBEF) onboard the Japanese Experimental Module ("Kibo") on the International Space Station. The CBEF provides "space-based controls" by generating artificial gravity in the HCU through a centrifuge, enabling a comparison of the biological consequences of microgravity and artificial gravity of 1 g on mice housed in space. Therefore, prior to the space experiment, a ground-based study to validate the habitability of the HCU is necessary to conduct space experiments using the HCU in the CBEF. Here, we investigated the ground-based effect of a 32-day housing period in the HCU breadboard model on male mice in comparison with the control cage mice. Morphology of skeletal muscle, the thymus, heart, and kidney, and the sperm function showed no critical abnormalities between the control mice and HCU mice. Slight but significant changes caused by the HCU itself were observed, including decreased body weight, increased weights of the thymus and gastrocnemius, reduced thickness of cortical bone of the femur, and several gene expressions from 11 tissues. Results suggest that the HCU provides acceptable conditions for mouse phenotypic analysis using CBEF in space, as long as its characteristic features are considered. Thus, the HCU is a feasible device for future space experiments.