Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Bioinformatics ; 40(2)2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38273708

RESUMO

MOTIVATION: Direct reprogramming (DR) is a process that directly converts somatic cells to target cells. Although DR via small molecules is safer than using transcription factors (TFs) in terms of avoidance of tumorigenic risk, the determination of DR-inducing small molecules is challenging. RESULTS: Here we present a novel in silico method, DIRECTEUR, to predict small molecules that replace TFs for DR. We extracted DR-characteristic genes using transcriptome profiles of cells in which DR was induced by TFs, and performed a variant of simulated annealing to explore small molecule combinations with similar gene expression patterns with DR-inducing TFs. We applied DIRECTEUR to predicting combinations of small molecules that convert fibroblasts into neurons or cardiomyocytes, and were able to reproduce experimentally verified and functionally related molecules inducing the corresponding conversions. The proposed method is expected to be useful for practical applications in regenerative medicine. AVAILABILITY AND IMPLEMENTATION: The code and data are available at the following link: https://github.com/HamanoLaboratory/DIRECTEUR.git.


Assuntos
Fatores de Transcrição , Transcriptoma , Fatores de Transcrição/metabolismo , Reprogramação Celular , Neurônios/metabolismo , Fibroblastos/metabolismo
2.
J Allergy Clin Immunol ; 153(5): 1268-1281, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38551536

RESUMO

BACKGROUND: Novel biomarkers (BMs) are urgently needed for bronchial asthma (BA) with various phenotypes and endotypes. OBJECTIVE: We sought to identify novel BMs reflecting tissue pathology from serum extracellular vesicles (EVs). METHODS: We performed data-independent acquisition of serum EVs from 4 healthy controls, 4 noneosinophilic asthma (NEA) patients, and 4 eosinophilic asthma (EA) patients to identify novel BMs for BA. We confirmed EA-specific BMs via data-independent acquisition validation in 61 BA patients and 23 controls. To further validate these findings, we performed data-independent acquisition for 6 patients with chronic rhinosinusitis without nasal polyps and 7 patients with chronic rhinosinusitis with nasal polyps. RESULTS: We identified 3032 proteins, 23 of which exhibited differential expression in EA. Ingenuity pathway analysis revealed that protein signatures from each phenotype reflected disease characteristics. Validation revealed 5 EA-specific BMs, including galectin-10 (Gal10), eosinophil peroxidase, major basic protein, eosinophil-derived neurotoxin, and arachidonate 15-lipoxygenase. The potential of Gal10 in EVs was superior to that of eosinophils in terms of diagnostic capability and detection of airway obstruction. In rhinosinusitis patients, 1752 and 8413 proteins were identified from EVs and tissues, respectively. Among 11 BMs identified in EVs and tissues from patients with chronic rhinosinusitis with nasal polyps, 5 (including Gal10 and eosinophil peroxidase) showed significant correlations between EVs and tissues. Gal10 release from EVs was implicated in eosinophil extracellular trapped cell death in vitro and in vivo. CONCLUSION: Novel BMs such as Gal10 from serum EVs reflect disease pathophysiology in BA and may represent a new target for liquid biopsy approaches.


Assuntos
Asma , Biomarcadores , Vesículas Extracelulares , Galectinas , Sinusite , Humanos , Asma/sangue , Asma/fisiopatologia , Asma/imunologia , Asma/diagnóstico , Vesículas Extracelulares/metabolismo , Feminino , Masculino , Galectinas/sangue , Biomarcadores/sangue , Adulto , Pessoa de Meia-Idade , Sinusite/sangue , Sinusite/imunologia , Rinite/sangue , Rinite/imunologia , Rinite/fisiopatologia , Pólipos Nasais/imunologia , Pólipos Nasais/sangue , Eosinófilos/imunologia , Idoso , Doença Crônica
3.
J Chem Inf Model ; 64(7): 2345-2355, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37768595

RESUMO

Deep generative models for molecular generation have been gaining much attention as structure generators to accelerate drug discovery. However, most previously developed methods are chemistry-centric approaches, and comprehensive biological responses in the cell have not been taken into account. In this study, we propose a novel computational method, TRIOMPHE-BOA (transcriptome-based inference and generation of molecules with desired phenotypes using the Bayesian optimization algorithm), to generate new chemical structures of inhibitor or activator candidates for therapeutic target proteins by integrating chemically and genetically perturbed transcriptome profiles. In the algorithm, the substructures of multiple molecules that were selected based on the transcriptome analysis are fused in the design of new chemical structures by exploring the latent space of a Transformer-based variational autoencoder using Bayesian optimization. Our results demonstrate the usefulness of the proposed method in terms of having high reproducibility of existing ligands for 10 therapeutic target proteins when compared with previous methods. Moreover, this method can be applied to proteins without detailed 3D structures or known ligands and is expected to become a powerful tool for more efficient hit identification.


Assuntos
Desenho de Fármacos , Descoberta de Drogas , Reprodutibilidade dos Testes , Teorema de Bayes , Descoberta de Drogas/métodos , Perfilação da Expressão Gênica
4.
J Chem Inf Model ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38950938

RESUMO

Foods possess a range of unexplored functionalities; however, fully identifying these functions through empirical means presents significant challenges. In this study, we have proposed an in silico approach to comprehensively predict the functionalities of foods, encompassing even processed foods. This prediction is accomplished through the utilization of machine learning on biomedical big data. Our focus revolves around disease-related protein pathways, wherein we statistically evaluate how the constituent compounds collaboratively regulate these pathways. The proposed method has been employed across 876 foods and 83 diseases, leading to an extensive revelation of both food functionalities and their underlying operational mechanisms. Additionally, this approach identifies food combinations that potentially affect molecular pathways based on interrelationships between food functions within disease-related pathways. Our proposed method holds potential for advancing preventive healthcare.

5.
Int J Cancer ; 153(8): 1472-1476, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37306521

RESUMO

Although an association has been reported between diuretics and myocarditis, it is unclear whether the risk of immune checkpoint inhibitor (ICI)-induced myocarditis is affected by concomitant diuretics. Thus, the aim of this work was to evaluate the impact of concomitant diuretics on ICI-induced myocarditis. This cross-sectional study used disproportionality analysis and a pharmacovigilance database to assess the risk of myocarditis with various diuretics in patients receiving ICIs via the analysis of data entered into the VigiBase database through December 2022. Multiple logistic regression analysis was performed to identify risk factors for myocarditis in patients who received ICIs. A total of 90 611 patients who received ICIs, including 975 cases of myocarditis, were included as the eligible dataset. A disproportionality in myocarditis was observed for loop diuretic use (reporting odds ratio 1.47, 95% confidence interval [CI] 1.02-2.04, P = .03) and thiazide use (reporting odds ratio 1.76, 95% CI 1.20-2.50, P < .01) in patients who received ICIs. The results of the multiple logistic regression analysis showed that the use of thiazides (odds ratio 1.67, 95% CI 1.15-2.34, P < .01) was associated with an increased risk of myocarditis in patients who received ICIs. Our findings may help to predict the risk of myocarditis in patients receiving ICIs.


Assuntos
Inibidores de Checkpoint Imunológico , Miocardite , Humanos , Inibidores de Checkpoint Imunológico/efeitos adversos , Inibidores de Simportadores de Cloreto de Sódio/efeitos adversos , Miocardite/induzido quimicamente , Estudos Transversais , Estudos Retrospectivos , Diuréticos/efeitos adversos , Tiazidas/efeitos adversos
6.
Bioinformatics ; 38(Suppl 1): i68-i76, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35758779

RESUMO

MOTIVATION: A critical element of drug development is the identification of therapeutic targets for diseases. However, the depletion of therapeutic targets is a serious problem. RESULTS: In this study, we propose the novel concept of target repositioning, an extension of the concept of drug repositioning, to predict new therapeutic targets for various diseases. Predictions were performed by a trans-disease analysis which integrated genetically perturbed transcriptomic signatures (knockdown of 4345 genes and overexpression of 3114 genes) and disease-specific gene transcriptomic signatures of 79 diseases. The trans-disease method, which takes into account similarities among diseases, enabled us to distinguish the inhibitory from activatory targets and to predict the therapeutic targetability of not only proteins with known target-disease associations but also orphan proteins without known associations. Our proposed method is expected to be useful for understanding the commonality of mechanisms among diseases and for therapeutic target identification in drug discovery. AVAILABILITY AND IMPLEMENTATION: Supplemental information and software are available at the following website [http://labo.bio.kyutech.ac.jp/~yamani/target_repositioning/]. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Reposicionamento de Medicamentos , Transcriptoma , Algoritmos , Biologia Computacional/métodos , Reposicionamento de Medicamentos/métodos , Software
7.
Bioinformatics ; 38(10): 2839-2846, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35561200

RESUMO

MOTIVATION: Direct reprogramming involves the direct conversion of fully differentiated mature cell types into various other cell types while bypassing an intermediate pluripotent state (e.g. induced pluripotent stem cells). Cell differentiation by direct reprogramming is determined by two types of transcription factors (TFs): pioneer factors (PFs) and cooperative TFs. PFs have the distinct ability to open chromatin aggregations, assemble a collective of cooperative TFs and activate gene expression. The experimental determination of two types of TFs is extremely difficult and costly. RESULTS: In this study, we developed a novel computational method, TRANSDIRE (TRANS-omics-based approach for DIrect REprogramming), to predict the TFs that induce direct reprogramming in various human cell types using multiple omics data. In the algorithm, potential PFs were predicted based on low signal chromatin regions, and the cooperative TFs were predicted through a trans-omics analysis of genomic data (e.g. enhancers), transcriptome data (e.g. gene expression profiles in human cells), epigenome data (e.g. chromatin immunoprecipitation sequencing data) and interactome data. We applied the proposed methods to the reconstruction of TFs that induce direct reprogramming from fibroblasts to six other cell types: hepatocytes, cartilaginous cells, neurons, cardiomyocytes, pancreatic cells and Paneth cells. We demonstrated that the methods successfully predicted TFs for most cell conversions with high accuracy. Thus, the proposed methods are expected to be useful for various practical applications in regenerative medicine. AVAILABILITY AND IMPLEMENTATION: The source code and data are available at the following website: http://figshare.com/s/b653781a5b9e6639972b. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Reprogramação Celular , Células-Tronco Pluripotentes Induzidas , Diferenciação Celular/genética , Cromatina , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Fatores de Transcrição/metabolismo
8.
Bioinformatics ; 38(Suppl_2): ii99-ii105, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36124791

RESUMO

MOTIVATION: Direct cell conversion, direct reprogramming (DR), is an innovative technology that directly converts source cells to target cells without bypassing induced pluripotent stem cells. The use of small compounds (e.g. drugs) for DR can help avoid carcinogenic risk induced by gene transfection; however, experimentally identifying small compounds remains challenging because of combinatorial explosion. RESULTS: In this article, we present a new computational method, COMPRENDRE (combinatorial optimization of pathway regulations for direct reprograming), to elucidate the mechanism of small compound-based DR and predict new combinations of small compounds for DR. We estimated the potential target proteins of DR-inducing small compounds and identified a set of target pathways involving DR. We identified multiple DR-related pathways that have not previously been reported to induce neurons or cardiomyocytes from fibroblasts. To overcome the problem of combinatorial explosion, we developed a variant of a simulated annealing algorithm to identify the best set of compounds that can regulate DR-related pathways. Consequently, the proposed method enabled to predict new DR-inducing candidate combinations with fewer compounds and to successfully reproduce experimentally verified compounds inducing the direct conversion from fibroblasts to neurons or cardiomyocytes. The proposed method is expected to be useful for practical applications in regenerative medicine. AVAILABILITY AND IMPLEMENTATION: The code supporting the current study is available at the http://labo.bio.kyutech.ac.jp/~yamani/comprendre. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Células-Tronco Pluripotentes Induzidas , Algoritmos , Fibroblastos , Neurônios , Proteínas
9.
Bioorg Med Chem Lett ; 93: 129438, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37549852

RESUMO

GLS1 is an attractive target not only as anticancer agents but also as candidates for various potential pharmaceutical applications such as anti-aging and anti-obesity treatments. We performed docking simulations based on the complex crystal structure of GLS1 and its inhibitor CB-839 and found that compound A bearing a thiadiazole skeleton exhibits GLS1 inhibition. Furthermore, we synthesized 27 thiadiazole derivatives in an effort to obtain a more potent GLS1 inhibitor. Among the synthesized derivatives, 4d showed more potent GLS1 inhibitory activity (IC50 of 46.7 µM) than known GLS1 inhibitor DON and A. Therefore, 4d is a very promising novel GLS1 inhibitor.


Assuntos
Antineoplásicos , Tiadiazóis , Antineoplásicos/farmacologia , Glutaminase/antagonistas & inibidores , Tiadiazóis/farmacologia , Tiadiazóis/química
10.
Drug Dev Res ; 84(1): 75-83, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36484282

RESUMO

Proton pump inhibitors (PPIs) are potent inhibitors of gastric acid secretion, used as first-line agents in treating peptic ulcers. However, we have previously reported that PPIs may diminish the therapeutic effect of anti-vascular endothelial growth factor (VEGF) drugs in patients with cancer. In this study, we explored the effects of vonoprazan, a novel gastric acid secretion inhibitor used for the treatment of peptic ulcers, on the secretion of VEGF in cancer cells and attempted to propose it as an alternative PPI for cancer chemotherapy. The effects of PPI and vonoprazan on VEGF expression in cancer cells were compared by real-time reverse transcription-polymerase chain reaction and ELISA. The interaction of vonoprazan and PPIs with transcriptional regulators by docking simulation analysis. In various cancer cell lines, including the human colorectal cancer cell line (LS174T), PPI increased VEGF messenger RNA expression and VEGF protein secretion, while this effect was not observed with vonoprazan. Molecular docking simulation analysis showed that vonoprazan had a lower binding affinity for estrogen receptor alpha (ER-α), one of the transcriptional regulators of VEGF, compared to PPI. Although the PPI-induced increase in VEGF expression was counteracted by pharmacological ER-α inhibition, the effect of vonoprazan on VEGF expression was unchanged. Vonoprazan does not affect VEGF expression in cancer cells, which suggests that vonoprazan might be an alternative to PPIs, with no interference with the therapeutic effects of anti-VEGF cancer chemotherapy.


Assuntos
Neoplasias , Úlcera Péptica , Humanos , Inibidores da Bomba de Prótons/efeitos adversos , Fatores de Crescimento Endotelial , Simulação de Acoplamento Molecular , Úlcera Péptica/induzido quimicamente , Úlcera Péptica/tratamento farmacológico , Pirróis/farmacologia , Neoplasias/tratamento farmacológico
11.
BMC Bioinformatics ; 23(1): 51, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35073843

RESUMO

BACKGROUND: Elucidating the modes of action (MoAs) of drugs and drug candidate compounds is critical for guiding translation from drug discovery to clinical application. Despite the development of several data-driven approaches for predicting chemical-disease associations, the molecular cues that organize the epigenetic landscape of drug responses remain poorly understood. RESULTS: With the use of a computational method, we attempted to elucidate the epigenetic landscape of drug responses, in terms of transcription factors (TFs), through large-scale ChIP-seq data analyses. In the algorithm, we systematically identified TFs that regulate the expression of chemically induced genes by integrating transcriptome data from chemical induction experiments and almost all publicly available ChIP-seq data (consisting of 13,558 experiments). By relating the resultant chemical-TF associations to a repository of associated proteins for a wide range of diseases, we made a comprehensive prediction of chemical-TF-disease associations, which could then be used to account for drug MoAs. Using this approach, we predicted that: (1) cisplatin promotes the anti-tumor activity of TP53 family members but suppresses the cancer-inducing function of MYCs; (2) inhibition of RELA and E2F1 is pivotal for leflunomide to exhibit antiproliferative activity; and (3) CHD8 mediates valproic acid-induced autism. CONCLUSIONS: Our proposed approach has the potential to elucidate the MoAs for both approved drugs and candidate compounds from an epigenetic perspective, thereby revealing new therapeutic targets, and to guide the discovery of unexpected therapeutic effects, side effects, and novel targets and actions.


Assuntos
Sequenciamento de Cromatina por Imunoprecipitação , Preparações Farmacêuticas , Sítios de Ligação , Análise de Dados , Epigênese Genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
12.
J Chem Inf Model ; 62(9): 2212-2225, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35187931

RESUMO

The construction of a virtual library (VL) consisting of novel molecules based on structure-activity relationships is crucial for lead optimization in rational drug design. In this study, we propose a novel scaffold-retained structure generator, EMPIRE (Exhaustive Molecular library Production In a scaffold-REtained manner), to create novel molecules in an arbitrary chemical space. By combining a deep learning model-based generator and a building block-based generator, the proposed method efficiently provides a VL consisting of molecules that retain the input scaffold and contain unique arbitrary substructures. The proposed method enables us to construct rational VLs located in unexplored chemical spaces containing molecules with unique skeletons (e.g., bicyclo[1.1.1]pentane and cubane) or elements (e.g., boron and silicon). We expect EMPIRE to contribute to efficient drug design with unique substructures by virtual screening.


Assuntos
Desenho de Fármacos , Relação Estrutura-Atividade
13.
Cancer Sci ; 112(4): 1655-1668, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33605496

RESUMO

Targeting mutated oncogenes is an effective approach for treating cancer. The 4 main driver genes of pancreatic ductal adenocarcinoma (PDAC) are KRAS, TP53, CDKN2A, and SMAD4, collectively called the "big 4" of PDAC, however they remain challenging therapeutic targets. In this study, ArfGAP with SH3 domain, ankyrin repeat and PH domain 2 (ASAP2), one of the ArfGAP family, was identified as a novel driver gene in PDAC. Clinical analysis with PDAC datasets showed that ASAP2 was overexpressed in PDAC cells based on increased DNA copy numbers, and high ASAP2 expression contributed to a poor prognosis in PDAC. The biological roles of ASAP2 were investigated using ASAP2-knockout PDAC cells generated with CRISPR-Cas9 technology or transfected PDAC cells. In vitro and in vivo analyses showed that ASAP2 promoted tumor growth by facilitating cell cycle progression through phosphorylation of epidermal growth factor receptor (EGFR). A repositioned drug targeting the ASAP2 pathway was identified using a bioinformatics approach. The gene perturbation correlation method showed that niclosamide, an antiparasitic drug, suppressed PDAC growth by inhibition of ASAP2 expression. These data show that ASAP2 is a novel druggable driver gene that activates the EGFR signaling pathway. Furthermore, niclosamide was identified as a repositioned therapeutic agent for PDAC possibly targeting ASAP2.


Assuntos
Carcinoma Ductal Pancreático/genética , Proteínas Ativadoras de GTPase/genética , Neoplasias Pancreáticas/genética , Animais , Carcinoma Ductal Pancreático/patologia , Ciclo Celular/genética , Linhagem Celular Tumoral , Variações do Número de Cópias de DNA/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Genes erbB-1/genética , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Pancreáticas/patologia , Transdução de Sinais/genética
14.
Bioinformatics ; 36(Suppl_1): i516-i524, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32657408

RESUMO

MOTIVATION: Disease states are distinguished from each other in terms of differing clinical phenotypes, but characteristic molecular features are often common to various diseases. Similarities between diseases can be explained by characteristic gene expression patterns. However, most disease-disease relationships remain uncharacterized. RESULTS: In this study, we proposed a novel approach for network-based characterization of disease-disease relationships in terms of drugs and therapeutic targets. We performed large-scale analyses of omics data and molecular interaction networks for 79 diseases, including adrenoleukodystrophy, leukaemia, Alzheimer's disease, asthma, atopic dermatitis, breast cancer, cystic fibrosis and inflammatory bowel disease. We quantified disease-disease similarities based on proximities of abnormally expressed genes in various molecular networks, and showed that similarities between diseases could be explained by characteristic molecular network topologies. Furthermore, we developed a kernel matrix regression algorithm to predict the commonalities of drugs and therapeutic targets among diseases. Our comprehensive prediction strategy indicated many new associations among phenotypically diverse diseases. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Biologia Computacional , Preparações Farmacêuticas , Algoritmos , Expressão Gênica , Fenótipo
15.
J Chem Inf Model ; 61(9): 4303-4320, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34528432

RESUMO

One of the most challenging tasks in the drug-discovery process is the efficient identification of small molecules with desired phenotypes. In this study, we propose a novel computational method for omics-based de novo drug design, which we call TRIOMPHE (transcriptome-based inference and generation of molecules with desired phenotypes). We investigated the correlation between chemically induced transcriptome profiles (reflecting cellular responses to compound treatment) and genetically perturbed transcriptome profiles (reflecting cellular responses to gene knock-down or gene overexpression of target proteins) in terms of ligand-target interactions. Subsequently, we developed novel machine learning methods to generate the chemical structures of new molecules with desired transcriptome profiles in the framework of a variational autoencoder. The use of desired transcriptome profiles enables the automatic design of molecules that are likely to have bioactivities for target proteins of interest. We showed that our methods can generate chemically valid molecules that are likely to have biological activities on 10 target proteins; moreover, they can outperform previous methods that had the same objective. Our omics-based structure generator is expected to be useful for the de novo design of drugs for a variety of target proteins.


Assuntos
Aprendizado de Máquina , Transcriptoma , Desenho de Fármacos , Descoberta de Drogas , Fenótipo
16.
J Chem Inf Model ; 61(5): 2341-2352, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-33861591

RESUMO

In structure-based virtual screening (SBVS), a binding site on a protein structure is used to search for ligands with favorable nonbonded interactions. Because it is computationally difficult, docking is time-consuming and any docking user will eventually encounter a chemical library that is too big to dock. This problem might arise because there is not enough computing power or because preparing and storing so many three-dimensional (3D) ligands requires too much space. In this study, however, we show that quality regressors can be trained to predict docking scores from molecular fingerprints. Although typical docking has a screening rate of less than one ligand per second on one CPU core, our regressors can predict about 5800 docking scores per second. This approach allows us to focus docking on the portion of a database that is predicted to have docking scores below a user-chosen threshold. Herein, usage examples are shown, where only 25% of a ligand database is docked, without any significant virtual screening performance loss. We call this method "lean-docking". To validate lean-docking, a massive docking campaign using several state-of-the-art docking software packages was undertaken on an unbiased data set, with only wet-lab tested active and inactive molecules. Although regressors allow the screening of a larger chemical space, even at a constant docking power, it is also clear that significant progress in the virtual screening power of docking scores is desirable.


Assuntos
Bibliotecas de Moléculas Pequenas , Sítios de Ligação , Ligantes , Simulação de Acoplamento Molecular , Ligação Proteica
17.
BMC Bioinformatics ; 21(Suppl 3): 94, 2020 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-32321421

RESUMO

BACKGROUND: Predicting of chemical compounds is one of the fundamental tasks in bioinformatics and chemoinformatics, because it contributes to various applications in metabolic engineering and drug discovery. The recent rapid growth of the amount of available data has enabled applications of computational approaches such as statistical modeling and machine learning method. Both a set of chemical interactions and chemical compound structures are represented as graphs, and various graph-based approaches including graph convolutional neural networks have been successfully applied to chemical network prediction. However, there was no efficient method that can consider the two different types of graphs in an end-to-end manner. RESULTS: We give a new formulation of the chemical network prediction problem as a link prediction problem in a graph of graphs (GoG) which can represent the hierarchical structure consisting of compound graphs and an inter-compound graph. We propose a new graph convolutional neural network architecture called dual graph convolutional network that learns compound representations from both the compound graphs and the inter-compound network in an end-to-end manner. CONCLUSIONS: Experiments using four chemical networks with different sparsity levels and degree distributions shows that our dual graph convolution approach achieves high prediction performance in relatively dense networks, while the performance becomes inferior on extremely-sparse networks.


Assuntos
Biologia Computacional/métodos , Gráficos por Computador , Modelos Químicos , Redes Neurais de Computação , Descoberta de Drogas
18.
Bioinformatics ; 35(14): i191-i199, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31510663

RESUMO

MOTIVATION: Genome-wide identification of the transcriptomic responses of human cell lines to drug treatments is a challenging issue in medical and pharmaceutical research. However, drug-induced gene expression profiles are largely unknown and unobserved for all combinations of drugs and human cell lines, which is a serious obstacle in practical applications. RESULTS: Here, we developed a novel computational method to predict unknown parts of drug-induced gene expression profiles for various human cell lines and predict new drug therapeutic indications for a wide range of diseases. We proposed a tensor-train weighted optimization (TT-WOPT) algorithm to predict the potential values for unknown parts in tensor-structured gene expression data. Our results revealed that the proposed TT-WOPT algorithm can accurately reconstruct drug-induced gene expression data for a range of human cell lines in the Library of Integrated Network-based Cellular Signatures. The results also revealed that in comparison with the use of original gene expression profiles, the use of imputed gene expression profiles improved the accuracy of drug repositioning. We also performed a comprehensive prediction of drug indications for diseases with gene expression profiles, which suggested many potential drug indications that were not predicted by previous approaches. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Biologia Computacional , Transcriptoma , Algoritmos , Linhagem Celular , Reposicionamento de Medicamentos , Humanos
19.
J Chem Inf Model ; 60(9): 4376-4387, 2020 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-32281797

RESUMO

In ligand-based virtual screening, high-throughput screening (HTS) data sets can be exploited to train classification models. Such models can be used to prioritize yet untested molecules, from the most likely active (against a protein target of interest) to the least likely active. In this study, a single-parameter ranking method with an Applicability Domain (AD) is proposed. In effect, Kernel Density Estimates (KDE) are revisited to improve their computational efficiency and incorporate an AD. Two modifications are proposed: (i) using vanishing kernels (i.e., kernel functions with a finite support) and (ii) using the Tanimoto distance between molecular fingerprints as a radial basis function. This construction is termed "Vanishing Ranking Kernels" (VRK). Using VRK on 21 HTS assays, it is shown that VRK can compete in performance with a graph convolutional deep neural network. VRK are conceptually simple and fast to train. During training, they require optimizing a single parameter. A trained VRK model usually defines an active AD. Exploiting this AD can significantly increase the screening frequency of a VRK model. Software: https://github.com/UnixJunkie/rankers. Data sets: https://zenodo.org/record/1320776 and https://zenodo.org/record/3540423.


Assuntos
Redes Neurais de Computação , Software , Ligantes
20.
J Chem Inf Model ; 59(1): 463-476, 2019 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-30567434

RESUMO

In Quantitative Structure-Activity Relationship (QSAR) modeling, one must come up with an activity model but also with an applicability domain for that model. Some existing methods to create an applicability domain are complex, hard to implement, and/or difficult to interpret. Also, they often require the user to select a threshold value, or they embed an empirical constant. In this work, we propose a trivial to interpret and fully automatic Distance-Based Boolean Applicability Domain (DBBAD) algorithm for category QSAR. In retrospective experiments on High Throughput Screening data sets, this applicability domain improves the classification performance and early retrieval of support vector machine and random forest based classifiers, while improving the scaffold diversity among top-ranked active molecules.


Assuntos
Algoritmos , Biologia Computacional/métodos , Avaliação Pré-Clínica de Medicamentos , Ensaios de Triagem em Larga Escala , Relação Quantitativa Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa