Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 205
Filtrar
1.
Biochem Biophys Res Commun ; 699: 149556, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38277727

RESUMO

Therapeutic devices incorporating living cells or tissues have been intensively investigated for applications in tissue engineering and regenerative medicine. Because many biological processes are governed by spatially dependent signals, programmable immobilization of materials is crucial for manipulating multiple types of cells. In this study, click chemistry substrates were introduced onto the surfaces of cells and cover glass, and the cells were fixed on the cover glass via covalent bonds for selective cell deposition. Azide group (Az)-labeled living cells were prepared by metabolic labeling with azido sugars. Following the introduction of Az, TCO (trans-cyclooctene) was metabolically labeled into the living cells by reacting with TCO-DBCO (dibenzocyclooctyne). Az and TCO in the cells were detected using DBCO-FAM (fluorescein)and tetrazine-Cy3, respectively. The mixture of Az-labeled green fluorescent protein HeLa cells and TCO-labeled red fluorescent protein HeLa cells was reacted in a culture dish in which three different cover glasses, DBCO-, tetrazine-, or methyl-coated, were added. Az- or TCO-labeled cells could be immobilized in a functional group-dependent manner. Next, tetrazine-labeled cells were incubated on TCO- or Az-labeled cell layers instead of cover glass. Functional group-dependent immobilization was also achieved in the cell layer. Introducing substrates for the click reaction could achieve cell-selective immobilization on different patterned glass surfaces, as well as cell-cell immobilization.


Assuntos
Química Click , Engenharia Tecidual , Humanos , Células HeLa , Azidas/química
2.
Biol Pharm Bull ; 45(9): 1246-1253, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36047192

RESUMO

Microfluidic devices are attracting attention for their ability to provide a biomimetic microenvironment wherein cells are arranged in a particular pattern and provided fluidic and mechanical forces. In this study, we evaluated drug transport across Caco-2 cell layers in microfluidic devices and investigated the effects of fluid flow on drug transport and metabolism. We designed a microfluidic device that comprises two blocks of polydimethylsiloxane and a sandwiched polyethylene terephthalate membrane with pores 3.0 µm in diameter. When cultured in a dynamic fluid environment, Caco-2 cells were multilayered and developed microvilli on the surface as compared with a static environment. Drugs with higher lipophilicity exhibited higher permeability across the Caco-2 layers, as well as in the conventional method using Transwells, and the fluidic conditions had little effect on permeability. In the Caco-2 cell layers cultured in Transwells and microfluidic devices, the basal-to-apical transport of rhodamine 123, a substrate of P-glycoprotein, was greater than the apical-to-basal transport, and the presence of tariquidar, an inhibitor of P-glycoprotein, completely diminished asymmetric transport. Furthermore, fluidic conditions promoted the metabolism of temocapril by carboxylesterases. On the other hand, we showed that fluidic conditions have little effect on gene expression of several transporters and metabolic enzymes. These results provide useful information regarding the application of microfluidic devices in drug transport and metabolism studies.


Assuntos
Intestinos , Dispositivos Lab-On-A-Chip , Subfamília B de Transportador de Cassetes de Ligação de ATP , Células CACO-2 , Humanos , Absorção Intestinal , Permeabilidade
3.
Biol Pharm Bull ; 43(7): 1141-1145, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32378553

RESUMO

In this study, we have developed a theranostic nanocarrier that can emit heat upon the exposure to ultrasound (US) irradiation as well as the generation of a contrast signal that can be detected with ultrasonography. The prepared acoustic nanodroplets (NDs) made with liquid perfluporopentane (PFPn) had an average size of 197.7 ± 3.6 nm in diameter and were stable in vitro for 60 min. US irradiation at 2 W.cm-2 induced phase change of NDs into bubbles in vitro. On the other hand, the intra-tumor injection of NDs in combination with US irradiation induced thermal emission in situ in B16BL6 melanoma tumor implanted into mice and the emission areas have mostly covered the tumor site. Also, the combination between NDs and US irradiation has inhibited the tumor growth. Under this condition, the heat shock protein (HSP70) in tumor was significantly upregulated after 6 h of the treatment of NDs with US. Thus, we have developed a therapeutic system with multiple theranostic modalities composed of acoustic NDs and US irradiation applicable to the tumor treatment on the external surface of the body.


Assuntos
Antineoplásicos/administração & dosagem , Hipertermia Induzida/métodos , Melanoma Experimental/diagnóstico por imagem , Nanopartículas/administração & dosagem , Nanomedicina Teranóstica/métodos , Termografia/métodos , Animais , Feminino , Melanoma Experimental/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Imagem Multimodal/métodos , Som
4.
Biol Pharm Bull ; 42(12): 2038-2044, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31554747

RESUMO

In this study, we have prepared perfluorohexane (PFH)-based acoustic nanodroplets (PFH-NDs) and evaluated their theranostic characteristics. Nile Red (NR) was incorporated into PFH-NDs as a model of hydrophobic drugs (NR-PFH-NDs). The mean particle diameters of PFH-NDs and NR-PFH-NDs were 205 ± 1.8 nm and 346.3 ± 6 nm, respectively. There was no significant PFH leakage from PFH-NDs during 90 min incubation at 37°C in the presence of 10% rat serum. The in vitro ultrasonography showed that the phase transition of PFH-NDs from liquid droplets to gassed bubbles could be induced by therapeutic low-intensity ultrasound with a frequency of 1 MHz and an intensity of 5 W/cm2. Irradiation of ultrasound in combination with NR-PFH-NDs enhanced uptake of NR in murine adenocarcinoma cells (C26). After intravenous injection of PFH-NDs to mice, PFH gradually disappeared from blood circulation with an elimination half-life of 43.3 min. Intravenous injection of PFH-NDs also resulted in significant contrast enhancement in the mouse carotid artery upon therapeutic low-intensity ultrasound irradiation. These results suggest the potential of PFH-NDs as a novel contrast agent for further theranostic applications.


Assuntos
Fluorocarbonos/química , Fluorocarbonos/efeitos da radiação , Nanopartículas/química , Adenocarcinoma , Animais , Artérias Carótidas/diagnóstico por imagem , Linhagem Celular Tumoral , Feminino , Fluorocarbonos/sangue , Camundongos Endogâmicos ICR , Nanoestruturas , Ratos , Ratos Wistar , Nanomedicina Teranóstica , Ultrassonografia
5.
J Infect Chemother ; 25(9): 687-694, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30982724

RESUMO

Currently, combinations of typical types of antiretroviral agents have been adopted as chemotherapy for human immunodeficiency virus (HIV) infection, comprising two nucleoside analogue reverse transcriptase inhibitors plus one of a non-nucleoside reverse transcriptase inhibitor, an integrase strand-transfer inhibitor, and a protease inhibitor. Although several meta-analyses have been conducted to determine first-line combination antiretroviral therapy, this has yet to be confirmed due to the technical limitation associated. In the present study, we applied a model-based meta-analysis (MBMA) approach, because it allows integration of information from clinical trials with varying dosing, duration, and sampling time points, resulting in enlargement of available data sources. We performed a bibliographic search to identify clinical trials involving dolutegravir (DTG)-based and efavirenz (EFV)-based regimens in HIV-infected, antiretroviral therapy-naïve adults, and then identified 30 independent trial data. The time course of drug effect was described by a consecutive first-order kinetic model and analyzed using the nonlinear mixed effect modeling approach. The developed model suggests that the DTG-based regimen provides a faster-acting and more sustainable drug effect than the EFV-based regimen. Moreover, the drug effect tends to appear more slowly and decay faster in severe patients having higher viral load or smaller baseline CD4 count.


Assuntos
Antirretrovirais/uso terapêutico , Terapia Antirretroviral de Alta Atividade/métodos , Benzoxazinas/uso terapêutico , Infecções por HIV/tratamento farmacológico , Compostos Heterocíclicos com 3 Anéis/uso terapêutico , Adulto , Alcinos , Ciclopropanos , Humanos , Metanálise como Assunto , Modelos Teóricos , Oxazinas , Piperazinas , Piridonas
6.
Mol Pharm ; 14(5): 1528-1537, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28191842

RESUMO

Sialyl LewisX (sLeX) is a natural ligand of E-selectin that is overexpressed by inflamed and tumor endothelium. Although sLeX is a potential ligand for drug targeting, synthesis of the tetrasaccharide is complicated with many reaction steps. In this study, structurally simplified novel sLeX analogues were designed and linked with 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-polyethylene glycol-2000 (DSPE-PEG) for E-selectin-mediated liposomal delivery. The sLeX structural simplification strategies include (1) replacement of the Gal-GlcNAc disaccharide unit with lactose to reduce many initial steps and (2) substitution of neuraminic acid with a negatively charged group, i.e., 3'-sulfo, 3'-carboxymethyl (3'-CM), or 3'-(1-carboxy)ethyl (3'-CE). While all the liposomes developed were similar in particle size and charge, the 3'-CE sLeX mimic liposome demonstrated the highest uptake in inflammatory cytokine-treated human umbilical vein endothelial cells (HUVECs), being even more potent than native sLeX-decorated liposomes. Inhibition studies using antiselectin antibodies revealed that their uptake was mediated primarily by overexpressed E-selectin on inflamed HUVECs. Molecular dynamics simulations were performed to gain mechanistic insight into the E-selectin binding differences among native and mimic sLeX. The terminally branched methyl group of the 3'-CE sLeX mimic oriented and faced the bulk hydrophilic solution during E-selectin binding. Since this state is entropically unfavorable, the 3'-CE sLeX mimic molecule might be pushed toward the binding pocket of E-selectin by a hydrophobic effect, leading to a higher probability of hydrogen-bond formation than native sLeX and the 3'-CM sLeX mimic. This corresponded with the fact that the 3'-CE sLeX mimic liposome exhibited much greater uptake than the 3'-CM sLeX mimic liposome.


Assuntos
Selectina E/química , Células Endoteliais/metabolismo , Lipossomos/química , Células Endoteliais da Veia Umbilical Humana , Humanos , Lipossomos/metabolismo , Simulação de Dinâmica Molecular
7.
Biol Pharm Bull ; 40(4): 540-545, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28381810

RESUMO

Glycosaminoglycans (GAGs) play important roles in various biological processes such as cell adhesion and signal transduction, as well as promote anti-inflammatory activity. We previously revealed that glycol-split heparin (HP)-aliphatic amine conjugates form self-assembled nanoparticles and suppress the production of pro-inflammatory cytokines such as tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1ß in lipopolysaccharide (LPS)-stimulated macrophages much more strongly than native HP (J. CONTROL: Release, 194, 2014, Babazada et al.). Considering that HP is not the only GAG to have anti-inflammatory activity, the present study was initiated to examine whether conjugation of GAGs with aliphatic amines is generally effective in their activity augmentation against LPS-stimulated macrophages. We newly synthesized the stearylamine conjugates of chondroitin sulfate (CS), hyaluronic acid (HA), and low-molecular-weight heparin (LH), and investigated the effect of the position and degree of sulfation and molecular weight of GAGs on their anti-inflammatory activity. All of the conjugates formed self-assembled nanoparticles in aqueous solution. The IC50 value for suppression of TNF-α production from the macrophages was the smallest with the derivative of LH, followed by HP, CS, and HA. The degree of sulfation appeared to be important in determining their anti-inflammatory activity, which would correspond to previous results using the derivatives of site-selectively desulfated HP. Comparison of HP and LH derivatives revealed that fractionated smaller heparin has greater anti-inflammatory activity.


Assuntos
Aminas/farmacologia , Anti-Inflamatórios/farmacologia , Glicosaminoglicanos/farmacologia , Mediadores da Inflamação/antagonistas & inibidores , Lipopolissacarídeos/toxicidade , Macrófagos Peritoneais/metabolismo , Aminas/química , Animais , Anti-Inflamatórios/química , Relação Dose-Resposta a Droga , Glicóis/química , Glicóis/farmacologia , Glicosaminoglicanos/química , Mediadores da Inflamação/metabolismo , Macrófagos Peritoneais/efeitos dos fármacos , Camundongos
8.
Mol Pharm ; 13(8): 2867-73, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27336683

RESUMO

To inhibit hepatic ischemia/reperfusion injury, we developed polyethylene glycol (PEG) conjugated (PEGylated) cysteine-modified lysine dendrimers with multiple reduced thiols, which function as scavengers of reactive oxygen species (ROS). Second, third, and fourth generation (K2, K3, and K4) highly branched amino acid spherical lysine dendrimers were synthesized, and cysteine (C) was conjugated to the outer layer of these lysine dendrimers to obtain K2C, K3C, and K4C dendrimers. Subsequently, PEG was reacted with the C residues of the dendrimers to obtain PEGylated dendrimers with multiple reduced thiols (K2C-PEG, K3C-PEG, and K4C-PEG). Radiolabeled K4C-PEG ((111)In-K4C-PEG) exhibited prolonged retention in the plasma, whereas (111)In-K2C-PEG and (111)In-K3C-PEG rapidly disappeared from the plasma. K4C-PEG significantly prevented the elevation of plasma alanine aminotransferase (ALT) activity, an index of hepatocyte injury, in a mouse model of hepatic ischemia/reperfusion injury. In contrast, K2C-PEG, K3C-PEG, l-cysteine, and glutathione, the latter two of which are classical reduced thiols, hardly affected the plasma ALT activity. These findings indicate that K4C-PEG with prolonged circulation time is a promising compound to inhibit hepatic ischemia/reperfusion injury.


Assuntos
Cisteína/química , Dendrímeros/química , Dendrímeros/uso terapêutico , Lisina/química , Polietilenoglicóis/química , Traumatismo por Reperfusão/prevenção & controle , Compostos de Sulfidrila/química , Compostos de Sulfidrila/uso terapêutico , Animais , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/metabolismo
9.
Biol Pharm Bull ; 39(10): 1687-1693, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27725447

RESUMO

A novel sustained release formulation of mitomycin C (MMC) was developed by employing single-walled carbon nanotubes (SWCNTs) wrapped by designed peptide with polyethylene glycol (PEG) modification (pegylation) as a nano-scale molecular platform. The amino groups of polycationic and amphiphilic H-(-Cys-Trp-Lys-Gly-)(-Lys-Trp-Lys-Gly-)6-OH [CWKG(KWKG)6] peptide associated with SWCNTs were modified using PEG with 12 units (PEG12) to improve the dispersion stability of the composite. Then thiol groups of peptide were conjugated with MMC using N-ε-maleimidocaproic acid (EMCA) as a linker via transformation of aziridine group of MMC. The obtained SWCNTs-CWKG(KWKG)6-(PEG)12-C6-MMC composites particularly that with 13.6% PEG modification extent of amino groups, showed good dispersion stability both in water and in a cell culture medium for 24 h. The release of MMC from SWCNTs-CWKG(KWKG)6-(PEG)12-C6-MMC was confirmed to follow first-order kinetics being accelerated by the pH increase in good agreement with the results observed for MMC-dextran conjugate with the same conjugation structure. The SWCNTs-CWKG(KWKG)6-(PEG)12 composite exhibited a considerably low cytotoxicity against cultured human lung adenocarcinoma epithelial cell line (A549). In contrast, SWCNTs-CWKG(KWKG)6-(PEG)12-C6-MMC demonstrated delayed but relatively corresponding antitumor activity with free MMC at the same concentration. The results suggested the potential role of SWCNTs-CWKG(KWKG)6-(PEG)12 as a carrier for a controlled release drug delivery system (DDS).


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Mitomicina/administração & dosagem , Nanotubos de Carbono , Peptídeos/administração & dosagem , Polietilenoglicóis/administração & dosagem , Células A549 , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacologia , Humanos , Mitomicina/química , Mitomicina/farmacologia , Nanotubos de Carbono/química , Peptídeos/química , Peptídeos/farmacologia , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia
10.
Biol Pharm Bull ; 39(10): 1734-1738, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27725454

RESUMO

We previously developed a negatively charged amino acid dendrimer to address the safety concerns associated with the constituent unit of these systems, which resulted in the formation of a sixth-generation glutamic acid-modified dendritic poly(L-lysine) system (KG6E). The aim of this study was to develop a nanocarrier for targeted drug delivery into cancer cells. In this study, we have synthesized a conjugate material consisting of anti-mucin 1 (MUC1) aptamer (anti-MUC1 apt) and KG6E (anti-MUC1 apt/KG6E) for targeted drug delivery to human lung adenocarcinoma A549 cells, which express high levels of the MUC1. The anti-MUC1 apt/KG6E was efficiently internalized by the A549 cells and subsequently transported to the endosomal and lysosomal compartments. In contrast, the cellular association of the sequence scrambled aptamer/KG6E conjugate (scrambled apt/KG6E) was much lower than that of the anti-MUC1 apt/KG6E in A549 cells. These results suggest that our newly developed anti-MUC1 apt/KG6E can be internalized in A549 cells via a MUC1 recognition pathway.


Assuntos
Aptâmeros de Nucleotídeos/administração & dosagem , Dendrímeros/administração & dosagem , Sistemas de Liberação de Medicamentos , Mucina-1/metabolismo , Células A549 , Adenocarcinoma/metabolismo , Adenocarcinoma de Pulmão , Aptâmeros de Nucleotídeos/química , Dendrímeros/química , Ácido Glutâmico/química , Humanos , Neoplasias Pulmonares/metabolismo , Polilisina/química
11.
Pharm Res ; 32(11): 3604-17, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26033768

RESUMO

PURPOSE: The solvent effect on skin permeability is important for assessing the effectiveness and toxicological risk of new dermatological formulations in pharmaceuticals and cosmetics development. The solvent effect occurs by diverse mechanisms, which could be elucidated by efficient and reliable prediction models. However, such prediction models have been hampered by the small variety of permeants and mixture components archived in databases and by low predictive performance. Here, we propose a solution to both problems. METHODS: We first compiled a novel large database of 412 samples from 261 structurally diverse permeants and 31 solvents reported in the literature. The data were carefully screened to ensure their collection under consistent experimental conditions. To construct a high-performance predictive model, we then applied support vector regression (SVR) and random forest (RF) with greedy stepwise descriptor selection to our database. The models were internally and externally validated. RESULTS: The SVR achieved higher performance statistics than RF. The (externally validated) determination coefficient, root mean square error, and mean absolute error of SVR were 0.899, 0.351, and 0.268, respectively. Moreover, because all descriptors are fully computational, our method can predict as-yet unsynthesized compounds. CONCLUSION: Our high-performance prediction model offers an attractive alternative to permeability experiments for pharmaceutical and cosmetic candidate screening and optimizing skin-permeable topical formulations.


Assuntos
Modelos Biológicos , Modelos Estatísticos , Preparações Farmacêuticas/química , Preparações Farmacêuticas/metabolismo , Absorção Cutânea/efeitos dos fármacos , Pele/metabolismo , Solventes/química , Algoritmos , Bases de Dados Factuais , Humanos , Modelos Lineares , Permeabilidade , Preparações Farmacêuticas/administração & dosagem , Solventes/metabolismo , Máquina de Vetores de Suporte
12.
Proc Natl Acad Sci U S A ; 109(19): 7523-8, 2012 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-22529368

RESUMO

The development of optical methods to control cellular functions is important for various biological applications. In particular, heat shock promoter-mediated gene expression systems by laser light are attractive targets for controlling cellular functions. However, previous approaches have considerable technical limitations related to their use of UV, short-wavelength visible (vis), and infrared (IR) laser light, which have poor penetration into biological tissue. Biological tissue is relatively transparent to light inside the diagnostic window at wavelengths of 650-1,100 nm. Here we present a unique optical biotechnological method using carbon nanohorn (CNH) that transforms energy from diagnostic window laser light to heat to control the expression of various genes. We report that with this method, laser irradiation within the diagnostic window resulted in effective heat generation and thus caused heat shock promoter-mediated gene expression. This study provides an important step forward in the development of light-manipulated gene expression technologies.


Assuntos
Regulação da Expressão Gênica/genética , Temperatura Alta , Luz , Nanotubos de Carbono/toxicidade , Animais , Biotecnologia/métodos , Linhagem Celular Tumoral , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos da radiação , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Resposta ao Choque Térmico/efeitos dos fármacos , Resposta ao Choque Térmico/genética , Resposta ao Choque Térmico/efeitos da radiação , Lasers , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Microscopia de Força Atômica , Microscopia Confocal , Células NIH 3T3 , Nanotubos de Carbono/química , Regiões Promotoras Genéticas/genética , Soroalbumina Bovina/química , Pele/efeitos dos fármacos , Pele/metabolismo , Pele/efeitos da radiação , Espectrofotometria
13.
Cancer Sci ; 105(8): 1049-55, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24850474

RESUMO

Patients with malignant ascites (MAs) display several symptoms, such as dyspnea, nausea, pain, and abdominal tenderness, resulting in a significant reduction in their quality of life. Tumor-associated macrophages (TAMs) play a crucial role in MA progression. Because TAMs have a tumor-promoting M2 phenotype, conversion of the M2 phenotypic function of TAMs would be promising for MA treatment. Nuclear factor-κB (NF-κB) is a master regulator of macrophage polarization. Here, we developed targeted transfer of a NF-κB decoy into TAMs by ultrasound (US)-responsive, mannose-modified liposome/NF-κB decoy complexes (Man-PEG bubble lipoplexes) in a mouse peritoneal dissemination model of Ehrlich ascites carcinoma. In addition, we investigated the effects of NF-κB decoy transfection into TAMs on MA progression and mouse survival rates. Intraperitoneal injection of Man-PEG bubble lipoplexes and US exposure transferred the NF-κB decoy into TAMs effectively. When the NF-κB decoy was delivered into TAMs by this method in the mouse peritoneal dissemination model, mRNA expression of the Th2 cytokine interleukin (IL)-10 in TAMs was decreased significantly. In contrast, mRNA levels of Th1 cytokines (IL-12, tumor necrosis factor-α, and IL-6) were increased significantly. Moreover, the expression level of vascular endothelial growth factor in ascites was suppressed significantly, and peritoneal angiogenesis showed a reduction. Furthermore, NF-κB decoy transfer into TAMs significantly decreased the ascitic volume and number of Ehrlich ascites carcinoma cells in ascites, and prolonged mouse survival. In conclusion, we transferred a NF-κB decoy efficiently by Man-PEG bubble lipoplexes with US exposure into TAMs, which may be a novel approach for MA treatment.


Assuntos
Carcinoma de Ehrlich , Terapia Genética/métodos , Macrófagos/metabolismo , Oligodesoxirribonucleotídeos/administração & dosagem , Oligonucleotídeos Antissenso/administração & dosagem , Animais , Modelos Animais de Doenças , Feminino , Lectinas Tipo C/metabolismo , Lipossomos , Receptor de Manose , Lectinas de Ligação a Manose/metabolismo , Camundongos , NF-kappa B/antagonistas & inibidores , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Superfície Celular/metabolismo , Transfecção/métodos , Ultrassom
14.
Biol Pharm Bull ; 37(1): 137-44, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24141263

RESUMO

Tumor-associated macrophages (TAMs) have an alternatively activated macrophage phenotype (M2) and promote cancer cell proliferation, angiogenesis and metastasis. Nuclear factor-kappaB (NF-κB) is one of the master regulators of macrophage polarization. Here, we investigated the effect of inhibition of NF-κB activity by small interfering RNA (siRNA) on the pro-tumor response of macrophages located in the tumor microenvironment in vitro. We used mouse peritoneal macrophages cultured in conditioned medium from colon-26 cancer cells as an in vitro TAM model (M2-like macrophages). Transfection of NF-κB (p50) siRNA into M2-like macrophages resulted in a significant decrease in the secretion of interleukin (IL)-10 (a T helper 2 (Th2) cytokine) and a significant increase of T helper 1 (Th1) cytokine production (IL-12, tumor necrosis factor-α, and IL-6). Furthermore, vascular endothelial growth factor production and matrix metalloproteinase-9 mRNA expression in M2-like macrophages were suppressed by inhibition of NF-κB expression with NF-κB (p50) siRNA. In addition, there was a reduction of arginase mRNA expression and increase in nitric oxide production. The cytokine secretion profiles of macrophages cultured in conditioned medium from either B16BL6 or PAN-02 cancer cells were also converted from M2 to classically activated (M1) macrophages by transfection of NF-κB (p50) siRNA. These results suggest that inhibition of NF-κB activity in M2-like macrophages alters their phenotype toward M1.


Assuntos
Neoplasias do Colo/metabolismo , Citocinas/metabolismo , Macrófagos Peritoneais/metabolismo , Macrófagos/metabolismo , NF-kappa B/antagonistas & inibidores , Neovascularização Patológica , RNA Interferente Pequeno/metabolismo , Animais , Arginase/genética , Arginase/metabolismo , Linhagem Celular Tumoral , Neoplasias do Colo/genética , Interleucinas/metabolismo , Lipopolissacarídeos , Ativação de Macrófagos , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Óxido Nítrico/metabolismo , Fenótipo , RNA Mensageiro/metabolismo , Transdução de Sinais , Células Th1/metabolismo , Transfecção , Fator de Necrose Tumoral alfa/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
15.
Biol Pharm Bull ; 37(4): 648-53, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24694610

RESUMO

Proteasome inhibitors are a novel class of molecular-targeted anti-cancer drugs that suppress the degradation of malfolded proteins, trigger endoplasmic reticulum (ER) stress, and activate apoptosis signals. Glucose-regulated protein 78 (GRP78), a major ER chaperone, is one of the most important molecules for transduction of unfolded protein response (UPR) signals. In accordance with past findings that expression of GRP78 is elevated in cancer cells and helps to resist stress-induced apoptosis, GRP78 knockdown could be effective in anticancer therapy. We tested this hypothesis and found that transfection of small interfering RNA (siRNA) targeting GRP78 inhibited the growth of RENCA renal carcinoma cells, in association with elevated gene expression of UPR downstream signaling molecules (CHOP, EDEM1, and ERdj4 mRNA). In addition, the combinatorial effect of GRP78 siRNA with ER stress inducers (tunicamycin, MG132, and 2-deoxyglucose) on survival was measured. Combination of GRP78 siRNA and the ER stress inducers more extensively reduced cell viability than combination with scrambled siRNA. Besides RENCA, B16BL6 melanoma cells were also shown to be sensitive to GRP78 siRNA. These results suggest that GRP78 knockdown might be an effective strategy for cancer therapy targeting UPR-induced apoptosis.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Proteínas de Choque Térmico/antagonistas & inibidores , RNA Interferente Pequeno/farmacologia , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desoxiglucose/farmacologia , Sinergismo Farmacológico , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Leupeptinas/farmacologia , Camundongos , Transdução de Sinais , Transfecção , Tunicamicina/farmacologia
16.
Nanomedicine ; 10(8): 1829-38, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24954382

RESUMO

This study assessed the ability of a new ultrasound (US) responsive gene delivery carrier, bubble lipopolyplexes, to deliver genes to the kidneys. The bubble lipopolyplexes showed highly selective gene expression in kidney tubules, but only after renal irradiation with US. These bubble lipopolyplexes, however, did not increase the expression of biomarkers of kidney injury, including blood urea nitrogen, serum creatinine, kidney injury molecule-1 mRNA, and clusterin mRNA, or induce any histopathological abnormalities in the kidney. Furthermore, pDNA containing CMV early enhancer/chicken beta-actin promoter prolonged gene expression by the bubble lipopolyplexes in the kidney for 42 days. This novel renal gene delivery method, in which transfection of bubble lipopolyplexes was followed by US irradiation of the kidneys, resulting in cell-selective, high, and long-term gene expression without renal injury in mice, may have future applications in patient treatment. FROM THE CLINICAL EDITOR: This study demonstrates a novel gene delivery method to the kidneys, utilizing bubble resulting in highly selective gene expression in renal tubules after ultrasound irradiation. In the studied rodent model, there was no evidence for renal damage using this novel delivery system.


Assuntos
Rim/metabolismo , Rim/efeitos da radiação , Lipossomos/química , Transfecção/métodos , Animais , Feminino , Camundongos , Camundongos Endogâmicos ICR
17.
Drug Metab Pharmacokinet ; 56: 101004, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38795660

RESUMO

Population pharmacokinetics/pharmacodynamics (pop-PK/PD) consolidates pharmacokinetic and pharmacodynamic data from many subjects to understand inter- and intra-individual variability due to patient backgrounds, including disease state and genetics. The typical workflow in pop-PK/PD analysis involves the determination of the structure model, selection of the error model, analysis based on the base model, covariate modeling, and validation of the final model. Machine learning is gaining considerable attention in the medical and various fields because, in contrast to traditional modeling, which often assumes linear or predefined relationships, machine learning modeling learns directly from data and accommodates complex patterns. Machine learning has demonstrated excellent capabilities for prescreening covariates and developing predictive models. This review introduces various applications of machine learning techniques in pop-PK/PD research.


Assuntos
Aprendizado de Máquina , Modelos Biológicos , Farmacocinética , Humanos
18.
ACS Biomater Sci Eng ; 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822812

RESUMO

In the evolving field of drug discovery and development, multiorgans-on-a-chip and microphysiological systems are gaining popularity owing to their ability to emulate in vivo biological environments. Among the various gut-liver-on-a-chip systems for studying oral drug absorption, the chip developed in this study stands out with two distinct features: incorporation of perfluoropolyether (PFPE) to effectively mitigate drug sorption and a unique enterohepatic single-passage system, which simplifies the analysis of first-pass metabolism and oral bioavailability. By introducing a bolus drug injection into the liver compartment, hepatic extraction alone could be evaluated, further enhancing our estimation of intestinal availability. In a study on midazolam (MDZ), PFPE-based chips showed more than 20-times the appearance of intact MDZ in the liver compartment effluent compared to PDMS-based counterparts. Notably, saturation of hepatic metabolism at higher concentrations was confirmed by observations when the dose was reduced from 200 µM to 10 µM. This result was further emphasized when the metabolism was significantly inhibited by the coadministration of ketoconazole. Our chip, which is designed to minimize the dead volume between the gut and liver compartments, is adept at sensitively observing the saturation of metabolism and the effect of inhibitors. Using genome-edited CYP3A4/UGT1A1-expressing Caco-2 cells, the estimates for intestinal and hepatic availabilities were 0.96 and 0.82, respectively; these values are higher than the known human in vivo values. Although the metabolic activity in each compartment can be further improved, this gut-liver-on-a-chip can not only be used to evaluate oral bioavailability but also to carry out individual assessment of both intestinal and hepatic availability.

19.
Hepatology ; 56(1): 259-69, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22271390

RESUMO

UNLABELLED: Hepatitis is often associated with the overexpression of various adhesion molecules. In particular, intracellular adhesion molecule-1 (ICAM-1), which is expressed on hepatic endothelial cells (HECs) in the early stage of inflammation, is involved in serious illnesses. Therefore, ICAM-1 suppression in HECs enables the suppression of inflammatory responses. Here, we developed an ICAM-1 small interfering RNA (siRNA) transfer method using ultrasound (US)-responsive and mannose-modified liposome/ICAM-1 siRNA complexes (Man-PEG(2000) bubble lipoplexes [Man-PEG(2000) BLs]), and achieved efficient HEC-selective ICAM-1 siRNA delivery in combination with US exposure. Moreover, the sufficient ICAM-1 suppression effects were obtained via this ICAM-1 siRNA transfer in vitro and in vivo, and potent anti-inflammatory effects were observed in various types of inflammation, such as lipopolysaccharide, dimethylnitrosamine, carbon tetrachloride, and ischemia/reperfusion-induced inflammatory mouse models. CONCLUSION: HEC-selective and efficient ICAM-1 siRNA delivery using Man-PEG(2000) BLs and US exposure enables suppression of various types of acute hepatic inflammation. This novel siRNA delivery method may offer a valuable system for medical treatment where the targeted cells are HECs.


Assuntos
Terapia Genética/métodos , Hepatite/terapia , Molécula 1 de Adesão Intercelular/efeitos dos fármacos , Molécula 1 de Adesão Intercelular/genética , RNA Interferente Pequeno/farmacologia , Terapia por Ultrassom/métodos , Doença Aguda , Análise de Variância , Animais , Células Cultivadas , Modelos Animais de Doenças , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Hepatite/patologia , Hepatócitos/citologia , Hepatócitos/metabolismo , Técnicas In Vitro , Lipossomos/química , Lipossomos/farmacologia , Masculino , Manose/química , Manose/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , RNA Interferente Pequeno/genética , Distribuição Aleatória , Valores de Referência , Transfecção/métodos
20.
J Chem Inf Model ; 53(10): 2506-10, 2013 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-24010770

RESUMO

Knowledge of the interactions between drugs and transporters is important for drug discovery and development as well as for the evaluation of their clinical safety. We recently developed a text-mining system for the automatic extraction of information on chemical-CYP3A4 interactions from the literature. This system is based on natural language processing and can extract chemical names and their interaction patterns according to sentence context. The present study aimed to extend this system to the extraction of information regarding chemical-transporter interactions. For this purpose, the key verb list designed for cytochrome P450 enzymes was replaced with that for known drug transporters. The performance of the system was then tested by examining the accuracy of information on chemical-P-glycoprotein (P-gp) interactions extracted from randomly selected PubMed abstracts. The system achieved 89.8% recall and 84.2% precision for the identification of chemical names and 71.7% recall and 78.6% precision for the extraction of chemical-P-gp interactions.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/química , Citocromo P-450 CYP3A/química , Mineração de Dados , Proteínas de Membrana Transportadoras/química , Processamento de Linguagem Natural , Bibliotecas de Moléculas Pequenas/química , Subfamília B de Transportador de Cassetes de Ligação de ATP/agonistas , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Inibidores do Citocromo P-450 CYP3A , Bases de Dados Bibliográficas , Bases de Dados de Compostos Químicos , Bases de Dados de Produtos Farmacêuticos , Descoberta de Drogas , Humanos , Ligantes , Proteínas de Membrana Transportadoras/agonistas , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa