Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Arch Microbiol ; 203(6): 3667-3682, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34076739

RESUMO

The bacterial foodborne pathogen Listeria monocytogenes has been implicated in fresh produce outbreaks with a significant economic impact. Given that L. monocytogenes is widespread in the environment, food production facilities constantly monitor for the presence of Listeria species. To develop a surveillance platform for food processing facilities, this study conducted a comparative genomic analysis for the identification of conserved high copy sequences in the ribosomal RNA of Listeria species. Simulated folding was performed to assess RNA accessibility in the identified genomic regions targeted for detection, and the developed singleplex assay accurately detected cell amounts lower than 5 cells, while no signals were detected for non-targeted bacteria. The singleplex assay was subsequently tested with a flow-through system, consisting of a DNA aptamer-capture step, followed by sample concentration and mechanical lysis for the detection of Listeria species. Validation experiments indicated the continuous flow-through system accurately detected Listeria species at low cell concentrations.


Assuntos
Dosagem de Genes , Genoma Bacteriano , Listeria/genética , Listeria/isolamento & purificação , Microbiologia de Alimentos
2.
Sensors (Basel) ; 17(9)2017 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-28930175

RESUMO

Human noroviruses (NoV) are the leading cause of human gastroenteritis in populations of all ages and are linked to most of the foodborne outbreaks worldwide. Hepatitis A virus (HAV) is another important foodborne enteric virus and is considered the most common agent causing acute liver disease worldwide. In the present study, a focused, low-density DNA microarray was developed and validated for the simultaneous identification of foodborne-associated genotypes of NoV and HAV. By employing a novel algorithm, capture probes were designed to target variable genomic regions commonly used for typing these foodborne viruses. Validation results showed that probe signals, specific for the tested NoV or HAV genotypes, were on average 200-times or 38-times higher than those detected for non-targeted genotypes, respectively. To improve the analytical sensitivity of this method, a 12-mer oligonucleotide spacer sequence was added to the capture probes and resulted in a detection threshold of less than 10 cRNA transcripts. These findings have indicated that this array-based typing sensor has the accuracy and sensitivity for identifying NoV and HAV genotypic profiles predominantly linked to food poisoning. The implementation of this typing sensor would thus provide highly relevant and valuable information for use in surveillance and outbreak attribution.


Assuntos
Vírus da Hepatite A , Norovirus , Doenças Transmitidas por Alimentos , Gastroenterite , Genótipo , Humanos
3.
Appl Environ Microbiol ; 82(4): 1090-1101, 2016 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-26637597

RESUMO

Shiga toxin-producing Escherichia coli (STEC) serotype O145 is one of the major non-O157 serotypes associated with severe human disease. Here we examined the genetic diversity, population structure, virulence potential, and antimicrobial resistance profiles of environmental O145 strains recovered from a major produce production region in California. Multilocus sequence typing analyses revealed that sequence type 78 (ST-78), a common ST in clinical strains, was the predominant genotype among the environmental strains. Similarly, all California environmental strains belonged to H28, a common H serotype in clinical strains. Although most environmental strains carried an intact fliC gene, only one strain retained swimming motility. Diverse stx subtypes were identified, including stx1a, stx2a, stx2c, and stx2e. Although no correlation was detected between the stx genotype and Stx1 production, high Stx2 production was detected mainly in strains carrying stx2a only and was correlated positively with the cytotoxicity of Shiga toxin. All environmental strains were capable of producing enterohemolysin, whereas only 10 strains were positive for anaerobic hemolytic activity. Multidrug resistance appeared to be common, as nearly half of the tested O145 strains displayed resistance to at least two different classes of antibiotics. The core virulence determinants of enterohemorrhagic E. coli were conserved in the environmental STEC O145 strains; however, there was large variation in the expression of virulence traits among the strains that were highly related genotypically, implying a trend of clonal divergence. Several cattle isolates exhibited key virulence traits comparable to those of the STEC O145 outbreak strains, emphasizing the emergence of hypervirulent strains in agricultural environments.


Assuntos
Microbiologia Ambiental , Variação Genética , Genótipo , Escherichia coli Shiga Toxigênica/classificação , Escherichia coli Shiga Toxigênica/genética , Fatores de Virulência/genética , California , Locomoção , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Fenótipo , Escherichia coli Shiga Toxigênica/isolamento & purificação
4.
Clin Mass Spectrom ; 11: 27-36, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34841070

RESUMO

Thirty-five environmental isolates of Shiga toxin-producing Escherichia coli (STEC) were analyzed by MALDI-TOF-TOF mass spectrometry, top-down/middle-down proteomics and DNA sequencing. Clinically-relevant Shiga toxin 2 (Stx2) produced by these STEC strains were subtyped based on MS and MS/MS (tandem mass spectrometry) of the intact B-subunit (top-down) and A2 fragment (middle-down) of the A-subunit using antibiotic-induced protein expression. Antibiotic induction of Stx2 was found to be strain dependent. By proteomic analysis, seventeen strains were identified as Stx2a, six strains as Stx2c, four strains as either Stx2a or 2c and eight strains as either Stx2a, 2c or 2d. DNA sequencing indicated only stx 2a and stx 2c genes as being present in these strains. Weak induction of Stx2 for certain strains made it difficult to distinguish between clinical subtypes by proteomic analysis. Very weak toxin induction in eight strains was consistent with a ∼1300 bp transposon insertion in the stx 2c A-subunit gene identified by DNA sequencing. DNA sequencing also revealed the presence of two bacteriophage (BP) in three strains with a stx 2a gene in each BP genome. Middle-down proteomic analysis of the A2 fragment confirmed expression of two stx 2a genes present in one of these strains based on a slight difference in the amino acid sequence (D ↔ E substitution) in the two A2 fragments.

5.
Microbiol Resour Announc ; 8(27)2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31270203

RESUMO

Shiga toxin-producing Escherichia coli O157:H7 is a foodborne pathogen and is responsible for outbreaks of human gastroenteritis. This report documents the draft genome sequences of nine O157:H7 cattle strains, which were identified to be PCR positive for a Shiga toxin gene but displayed different levels of functional toxin activity.

6.
J Agric Food Chem ; 67(5): 1554-1562, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30485086

RESUMO

A set of 45 environmental strains of Shiga toxin producing Escherichia coli (STEC) from three California counties were analyzed for Shiga toxin production by nanospray liquid chromatography-mass spectrometry and Vero cell bioassay. The STEC in this set comprised six serotypes ((O113:H21, O121:H19, O157:H7, O6:H34, O177:H25, and O185:H7) each containing either the stx2a or stx2c operon. Six of the seven O113:H21 were found to contain two distinct stx2a operons. Eight strains of O157:H7 possessed a stx2c operon whose A subunit gene was interrupted by an insertion sequence (IS1203v). Shiga toxin production was induced by nutrient depletion and quantitated by mass spectrometry. The 37 strains produced Shiga toxins in a near 50-fold range (1.4-49 ng/mL). The IS-interrupted strains expressed low but measurable amounts of the B subunits (0.5-1.9 ng/mL). Another strain possessed an identical stx operon without an IS interruption and produced intact Stx2c (5.7 ng/mL).


Assuntos
Fezes/microbiologia , Gado/microbiologia , Toxina Shiga/química , Escherichia coli Shiga Toxigênica/química , Microbiologia do Solo , Animais , California , Chlorocebus aethiops , Cromatografia Líquida , Escherichia coli O157/química , Escherichia coli O157/genética , Escherichia coli O157/metabolismo , Sedimentos Geológicos/microbiologia , Humanos , Espectrometria de Massas , Óperon , Toxina Shiga/metabolismo , Escherichia coli Shiga Toxigênica/genética , Escherichia coli Shiga Toxigênica/isolamento & purificação , Escherichia coli Shiga Toxigênica/metabolismo , Células Vero
7.
J Microbiol Immunol Infect ; 51(4): 425-434, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28778595

RESUMO

Shiga toxin-producing Escherichia coli (STEC) is an enteric pathogen linked to outbreaks of human gastroenteritis with diverse clinical spectra. In this review, we have examined the currently methodologies and molecular characterization techniques for assessing the phenotypic, genotypic and functional characteristics of STEC O157 and non-O157. In particular, traditional culture and isolation methods, including selective enrichment and differential plating, have enabled the effective recovery of STEC. Following recovery, immunological serotyping of somatic surface antigens (O-antigens) and flagellum (H-antigens) are employed for the classification of the STEC isolates. Molecular genotyping methods, including multiple-locus variable-number tandem repeat analysis, arrays, and whole genome sequencing, can discriminate the isolate virulence profile beyond the serotype level. Virulence profiling is focused on the identification of chromosomal and plasmid genes coding for adhesins, cytotoxins, effectors, and hemolysins to better assess the pathogenic potential of the recovered STEC isolates. Important animal reservoirs are cattle and other small domestic ruminants. STEC can also be recovered from other carriers, such as mammals, birds, fish, amphibians, shellfish and insects. Finally, antimicrobial resistance in STEC is a matter of growing concern, supporting the need to monitor the use of these agents by private, public and agricultural sectors. Certain antimicrobials can induce Shiga toxin production and thus promote the onset of severe disease symptoms in humans. Together, this information will provide a better understanding of risks associated with STEC and will aid in the development of efficient and targeted intervention strategies.


Assuntos
Farmacorresistência Bacteriana , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Genótipo , Sorogrupo , Escherichia coli Shiga Toxigênica/classificação , Escherichia coli Shiga Toxigênica/efeitos dos fármacos , Animais , Reservatórios de Doenças , Técnicas de Genotipagem , Humanos , Sorotipagem , Escherichia coli Shiga Toxigênica/genética , Escherichia coli Shiga Toxigênica/isolamento & purificação , Fatores de Virulência/análise , Fatores de Virulência/genética
8.
Genome Announc ; 5(44)2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29097465

RESUMO

Shiga toxin-producing Escherichia coli is a foodborne and waterborne pathogen and is responsible for outbreaks of human gastroenteritis. This report documents the draft genome sequences of seven O113:H21 strains recovered from livestock, wildlife, and soil samples recovered from a major agricultural region for leafy greens in California, USA.

9.
PLoS One ; 12(11): e0187827, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29117270

RESUMO

The rapid spreading of polymyxin E (colistin) resistance among bacterial strains through the horizontally transmissible mcr-1 and mcr-2 plasmids has become a serious concern. The emergence of these genes in Shiga toxin-producing Escherichia coli (STEC), a group of human pathogenic bacteria was even more worrisome, urging us to investigate the prevalence of mcr genes among STEC isolates. A total of 1000 STEC isolates, recovered from livestock, wildlife, produce and other environmental sources in a major production region for leafy vegetables in California during 2006-2014, were screened by PCR for the presence of plasmid-borne mcr-1 and mcr-2. All isolates tested yielded negative results, indicating if any, the occurrence rate of mcr-1/mcr-2 among STEC was very low in this agricultural region. This study provides valuable information such as sample size needed and methodologies for future surveillance programs of antimicrobial resistance.


Assuntos
DNA Bacteriano/genética , Proteínas de Escherichia coli/genética , Microbiologia de Alimentos , Plasmídeos/química , Toxinas Shiga/genética , Escherichia coli Shiga Toxigênica/genética , Animais , California/epidemiologia , Monitoramento Epidemiológico , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/prevenção & controle , Transferência Genética Horizontal , Humanos , Gado/microbiologia , Plasmídeos/isolamento & purificação , Reação em Cadeia da Polimerase , Isoformas de Proteínas/genética , Toxinas Shiga/isolamento & purificação , Escherichia coli Shiga Toxigênica/isolamento & purificação , Verduras/microbiologia
10.
Artigo em Inglês | MEDLINE | ID: mdl-26734130

RESUMO

BACKGROUND: Antimicrobial resistance in Shiga toxin-producing Escherichia coli (STEC) O157 and non-O157 is a matter of increasing concern. The aim of the present study was to investigate the antimicrobial resistance profiles of STEC O157 and non-O157 recovered from feces of domestic farm animals in the agricultural Culiacan Valley in Northwestern Mexico. FINDINGS: All of the examined STEC strains showed susceptibility to five antimicrobials, ceftazidime, ceftriaxone, ciprofloxacin, nalidixic acid, and trimethoprim-sulfamethoxazole. However, resistance to the four antimicrobials, ampicillin, cephalothin, chloramphenicol, and kanamycin was commonly observed. Interestingly, non-susceptibility to cephalothin was predominant among the examined STEC strains, corresponding to 85 % (22/26) of the O157:H7 from cattle, sheep and chicken and 73 % (24/33) of the non-O157 strains from cattle and sheep. Statistical analyses revealed that resistance to ampicillin was significantly correlated to 38 % (10/26) of STEC O157:H7 strains from multiple animal sources. Another significant correlation was found between serotype, source, and antimicrobial resistance; all of the O20:H4 strains, recovered from sheep, were highly resistant to tetracycline. Multidrug resistance profiles were identified in 42 % (22/53) of the non-susceptible STEC strains with clinically-relevant serotypes O8:H9, O75:H8, O146:H21, and O157:H7. CONCLUSIONS: STEC O157 and non-O157 strains, recovered from domestic farm animals in the Culiacan Valley, exhibited resistance to classes of antimicrobials commonly used in Mexico, such as aminoglycosides, tetracyclines, cephalosporins and penicillin but were susceptible to fluoroquinolones, quinolones, and sulfonamides. These findings provide fundamental information that would aid in the surveillance of antimicrobial resistance in an important agricultural region in Northwestern Mexico.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa