Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Med Image Anal ; 89: 102888, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37451133

RESUMO

Formalizing surgical activities as triplets of the used instruments, actions performed, and target anatomies is becoming a gold standard approach for surgical activity modeling. The benefit is that this formalization helps to obtain a more detailed understanding of tool-tissue interaction which can be used to develop better Artificial Intelligence assistance for image-guided surgery. Earlier efforts and the CholecTriplet challenge introduced in 2021 have put together techniques aimed at recognizing these triplets from surgical footage. Estimating also the spatial locations of the triplets would offer a more precise intraoperative context-aware decision support for computer-assisted intervention. This paper presents the CholecTriplet2022 challenge, which extends surgical action triplet modeling from recognition to detection. It includes weakly-supervised bounding box localization of every visible surgical instrument (or tool), as the key actors, and the modeling of each tool-activity in the form of triplet. The paper describes a baseline method and 10 new deep learning algorithms presented at the challenge to solve the task. It also provides thorough methodological comparisons of the methods, an in-depth analysis of the obtained results across multiple metrics, visual and procedural challenges; their significance, and useful insights for future research directions and applications in surgery.


Assuntos
Inteligência Artificial , Cirurgia Assistida por Computador , Humanos , Endoscopia , Algoritmos , Cirurgia Assistida por Computador/métodos , Instrumentos Cirúrgicos
2.
Int J Comput Assist Radiol Surg ; 17(9): 1633-1641, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35604489

RESUMO

PURPOSE: Recently, a large number of patients with acute ischemic stroke benefited from the use of thrombectomy, a minimally invasive intervention technique for mechanically removing thrombi from the cerebrovasculature. During thrombectomy, 2D digital subtraction angiography (DSA) image sequences are acquired simultaneously from the posterior-anterior and the lateral view to control whether thrombus removal was successful, and to possibly detect newly occluded areas caused by thrombus fragments split from the main thrombus. However, such new occlusions, which would be treatable by thrombectomy, may be overlooked during the intervention. To prevent this, we developed a deep learning-based approach to automatic classification of DSA sequences into thrombus-free and non-thrombus-free sequences. METHODS: We performed a retrospective study based on the single-center DSA data of thrombectomy patients. For classifying the DSA sequences, we applied Long Short-Term Memory or Gated Recurrent Unit networks and combined them with different Convolutional Neural Networks used as feature extractor. These network variants were trained on the DSA data by using five-fold cross-validation. The classification performance was determined on a test data set with respect to the Matthews correlation coefficient (MCC) and the area under the curve (AUC). Finally, we evaluated our models on patient cases, in which overlooking thrombi during thrombectomy had happened. RESULTS: Depending on the specific model configuration used, we obtained a performance of up to 0.77[Formula: see text]0.94 for the MCC[Formula: see text]AUC, respectively. Additionally, overlooking thrombi could have been prevented in the reported patient cases, as our models would have classified the corresponding DSA sequences correctly. CONCLUSION: Our deep learning-based approach to thrombus identification in DSA sequences yielded high accuracy on our single-center test data set. External validation is now required to investigate the generalizability of our method. As demonstrated, using this new approach may help reduce the incident risk of overlooking thrombi during thrombectomy in the future.


Assuntos
Isquemia Encefálica , Aprendizado Profundo , AVC Isquêmico , Acidente Vascular Cerebral , Trombose , Angiografia Digital/métodos , Isquemia Encefálica/diagnóstico por imagem , Isquemia Encefálica/cirurgia , Humanos , AVC Isquêmico/diagnóstico por imagem , AVC Isquêmico/cirurgia , Estudos Retrospectivos , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/cirurgia , Trombectomia/efeitos adversos , Trombectomia/métodos
3.
Int J Comput Assist Radiol Surg ; 17(8): 1477-1486, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35624404

RESUMO

PURPOSE: As human failure has been shown to be one primary cause for post-operative death, surgical training is of the utmost socioeconomic importance. In this context, the concept of surgical telestration has been introduced to enable experienced surgeons to efficiently and effectively mentor trainees in an intuitive way. While previous approaches to telestration have concentrated on overlaying drawings on surgical videos, we explore the augmented reality (AR) visualization of surgical hands to imitate the direct interaction with the situs. METHODS: We present a real-time hand tracking pipeline specifically designed for the application of surgical telestration. It comprises three modules, dedicated to (1) the coarse localization of the expert's hand and the subsequent (2) segmentation of the hand for AR visualization in the field of view of the trainee and (3) regression of keypoints making up the hand's skeleton. The semantic representation is obtained to offer the ability for structured reporting of the motions performed as part of the teaching. RESULTS: According to a comprehensive validation based on a large data set comprising more than 14,000 annotated images with varying application-relevant conditions, our algorithm enables real-time hand tracking and is sufficiently accurate for the task of surgical telestration. In a retrospective validation study, a mean detection accuracy of 98%, a mean keypoint regression accuracy of 10.0 px and a mean Dice Similarity Coefficient of 0.95 were achieved. In a prospective validation study, it showed uncompromised performance when the sensor, operator or gesture varied. CONCLUSION: Due to its high accuracy and fast inference time, our neural network-based approach to hand tracking is well suited for an AR approach to surgical telestration. Future work should be directed to evaluating the clinical value of the approach.


Assuntos
Algoritmos , Realidade Aumentada , Mãos/cirurgia , Humanos , Redes Neurais de Computação , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa