Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Nature ; 634(8034): 579-584, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39358510

RESUMO

The Ruddlesden-Popper (R-P) bilayer nickelate, La3Ni2O7, was recently found to show signatures of high-temperature superconductivity (HTSC) at pressures above 14 GPa (ref. 1). Subsequent investigations achieved zero resistance in single-crystalline and polycrystalline samples under hydrostatic pressure conditions2-4. Yet, obvious diamagnetic signals, the other hallmark of superconductors, are still lacking owing to the filamentary nature with low superconducting volume fraction2,4,5. The presence of a new 1313 polymorph and competing R-P phases obscured proper identification of the phase for HTSC6-9. Thus, achieving bulk HTSC and identifying the phase at play are the most prominent tasks. Here we address these issues in the praseodymium (Pr)-doped La2PrNi2O7 polycrystalline samples. We find that substitutions of Pr for La effectively inhibit the intergrowth of different R-P phases, resulting in a nearly pure bilayer structure. For La2PrNi2O7, pressure-induced orthorhombic to tetragonal structural transition takes place at Pc ≈ 11 GPa, above which HTSC emerges gradually on further compression. The superconducting transition temperatures at 18-20 GPa reach T c onset = 82.5 K and T c zero = 60 K , which are the highest values, to our knowledge, among known nickelate superconductors. Importantly, bulk HTSC was testified by detecting clear diamagnetic signals below about 75 K with appreciable superconducting shielding volume fractions at a pressure of above 15 GPa. Our results not only resolve the existing controversies but also provide directions for exploring bulk HTSC in the bilayer nickelates.

2.
Nature ; 604(7906): 468-473, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35444320

RESUMO

Many-body interactions between carriers lie at the heart of correlated physics. The ability to tune such interactions would allow the possibility to access and control complex electronic phase diagrams. Recently, two-dimensional moiré superlattices have emerged as a promising platform for quantum engineering such phenomena1-3. The power of the moiré system lies in the high tunability of its physical parameters by adjusting the layer twist angle1-3, electrical field4-6, moiré carrier filling7-11 and interlayer coupling12. Here we report that optical excitation can highly tune the spin-spin interactions between moiré-trapped carriers, resulting in ferromagnetic order in WS2 /WSe2 moiré superlattices. Near the filling factor of -1/3 (that is, one hole per three moiré unit cells), as the excitation power at the exciton resonance increases, a well-developed hysteresis loop emerges in the reflective magnetic circular dichroism signal as a function of magnetic field, a hallmark of ferromagnetism. The hysteresis loop persists down to charge neutrality, and its shape evolves as the moiré superlattice is gradually filled, indicating changes of magnetic ground state properties. The observed phenomenon points to a mechanism in which itinerant photoexcited excitons mediate exchange coupling between moiré-trapped holes. This exciton-mediated interaction can be of longer range than direct coupling between moiré-trapped holes9, and thus magnetic order arises even in the dilute hole regime. This discovery adds a dynamic tuning knob to the rich many-body Hamiltonian of moiré quantum matter13-19.

3.
Nat Mater ; 23(2): 224-229, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38177379

RESUMO

Moiré excitons are emergent optical excitations in two-dimensional semiconductors with moiré superlattice potentials. Although these excitations have been observed on several platforms, a system with dynamically tunable moiré potential to tailor their properties is yet to be realized. Here we present a continuously tunable moiré potential in monolayer WSe2, enabled by its proximity to twisted bilayer graphene (TBG) near the magic angle. By tuning local charge density via gating, TBG provides a spatially varying and dynamically tunable dielectric superlattice for modulation of monolayer WSe2 exciton wave functions. We observed emergent moiré exciton Rydberg branches with increased energy splitting following doping of TBG due to exciton wave function hybridization between bright and dark Rydberg states. In addition, emergent Rydberg states can probe strongly correlated states in TBG at the magic angle. Our study provides a new platform for engineering moiré excitons and optical accessibility to electronic states with small correlation gaps in TBG.

4.
Nature ; 567(7746): 66-70, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30804526

RESUMO

The formation of moiré patterns in crystalline solids can be used to manipulate their electronic properties, which are fundamentally influenced by periodic potential landscapes. In two-dimensional materials, a moiré pattern with a superlattice potential can be formed by vertically stacking two layered materials with a twist and/or a difference in lattice constant. This approach has led to electronic phenomena including the fractal quantum Hall effect1-3, tunable Mott insulators4,5 and unconventional superconductivity6. In addition, theory predicts that notable effects on optical excitations could result from a moiré potential in two-dimensional valley semiconductors7-9, but these signatures have not been detected experimentally. Here we report experimental evidence of interlayer valley excitons trapped in a moiré potential in molybdenum diselenide (MoSe2)/tungsten diselenide (WSe2) heterobilayers. At low temperatures, we observe photoluminescence close to the free interlayer exciton energy but with linewidths over one hundred times narrower (around 100 microelectronvolts). The emitter g-factors are homogeneous across the same sample and take only two values, -15.9 and 6.7, in samples with approximate twist angles of 60 degrees and 0 degrees, respectively. The g-factors match those of the free interlayer exciton, which is determined by one of two possible valley-pairing configurations. At twist angles of approximately 20 degrees the emitters become two orders of magnitude dimmer; however, they possess the same g-factor as the heterobilayer at a twist angle of approximately 60 degrees. This is consistent with the umklapp recombination of interlayer excitons near the commensurate 21.8-degree twist angle7. The emitters exhibit strong circular polarization of the same helicity for a given twist angle, which suggests that the trapping potential retains three-fold rotational symmetry. Together with a characteristic dependence on power and excitation energy, these results suggest that the origin of the observed effects is interlayer excitons trapped in a smooth moiré potential with inherited valley-contrasting physics. This work presents opportunities to control two-dimensional moiré optics through variation of the twist angle.

5.
Proc Natl Acad Sci U S A ; 119(42): e2207681119, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36215491

RESUMO

In intrinsic magnetic topological insulators, Dirac surface-state gaps are prerequisites for quantum anomalous Hall and axion insulating states. Unambiguous experimental identification of these gaps has proved to be a challenge, however. Here, we use molecular beam epitaxy to grow intrinsic MnBi2Te4 thin films. Using scanning tunneling microscopy/spectroscopy, we directly visualize the Dirac mass gap and its disappearance below and above the magnetic order temperature. We further reveal the interplay of Dirac mass gaps and local magnetic defects. We find that, in high defect regions, the Dirac mass gap collapses. Ab initio and coupled Dirac cone model calculations provide insight into the microscopic origin of the correlation between defect density and spatial gap variations. This work provides unambiguous identification of the Dirac mass gap in MnBi2Te4 and, by revealing the microscopic origin of its gap variation, establishes a material design principle for realizing exotic states in intrinsic magnetic topological insulators.

6.
Proc Natl Acad Sci U S A ; 119(42): e2204804119, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36215510

RESUMO

Recently, log-periodic quantum oscillations have been detected in the topological materials zirconium pentatelluride (ZrTe5) and hafnium pentatelluride (HfTe5), displaying an intriguing discrete scale invariance (DSI) characteristic. In condensed materials, the DSI is considered to be related to the quasi-bound states formed by massless Dirac fermions with strong Coulomb attraction, offering a feasible platform to study the long-pursued atomic-collapse phenomenon. Here, we demonstrate that a variety of atomic vacancies in the topological material HfTe5 can host the geometric quasi-bound states with a DSI feature, resembling an artificial supercritical atom collapse. The density of states of these quasi-bound states is enhanced, and the quasi-bound states are spatially distributed in the "orbitals" surrounding the vacancy sites, which are detected and visualized by low-temperature scanning tunneling microscope/spectroscopy. By applying the perpendicular magnetic fields, the quasi-bound states at lower energies become wider and eventually invisible; meanwhile, the energies of quasi-bound states move gradually toward the Fermi energy (EF). These features are consistent with the theoretical prediction of a magnetic field-induced transition from supercritical to subcritical states. The direct observation of geometric quasi-bound states sheds light on the deep understanding of the DSI in quantum materials.

7.
Nano Lett ; 24(34): 10562-10568, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39159397

RESUMO

MnBi2Te4 is a magnetic topological insulator with layered A-type antiferromagnetic order. It exhibits a rich layer- and magnetic-state dependent topological phase diagram; however, much about the coupling between spin, charge, and lattice remains to be explored. In this work, we report that MnBi2Te4 is an excellent acoustic phonon cavity by realizing phonon frequency combs using picosecond ultrasonics. With the generated acoustic phonon wavepackets, we demonstrate that the timing and phase of acoustic echoes can be used to detect the presence of stacking faults between van der Waals layers buried deep within the crystal. Furthermore, by implementing this nondestructive ultrafast optical measurement in conjunction with time-resolved magneto-optical Kerr effect experiments, we uncover that out-of-plane vibrations in MnBi2Te4 do not couple to the magnetic order, i.e. there is no appreciable magnetostriction. Our work points out how a well-developed technique can probe the structural defects and phonon pulse engineering in layered topological insulators.

8.
Nano Lett ; 24(27): 8320-8326, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38935843

RESUMO

Magnetic topological materials with coexisting magnetism and nontrivial band structures exhibit many novel quantum phenomena, including the quantum anomalous Hall effect, the axion insulator state, and the Weyl semimetal phase. As a stoichiometric layered antiferromagnetic topological insulator, thin films of MnBi2Te4 show fascinating even-odd layer-dependent physics. In this work, we fabricate a series of thin-flake MnBi2Te4 devices using stencil masks and observe the Chern insulator state at high magnetic fields. Upon magnetic field training, a large exchange bias effect is observed in odd but not in even septuple layer (SL) devices. Through theoretical calculations, we attribute the even-odd layer-dependent exchange bias effect to the contrasting surface and bulk magnetic properties of MnBi2Te4 devices. Our findings reveal the microscopic magnetic configuration of MnBi2Te4 thin flakes and highlight the challenges in replicating the zero magnetic field quantum anomalous Hall effect in odd SL MnBi2Te4 devices.

9.
Nat Mater ; 22(5): 599-604, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36894775

RESUMO

Excitons, Coulomb-bound electron-hole pairs, play a crucial role in both optical excitation and correlated phenomena in solids. When excitons interact with other quasiparticles, few- and many-body excited states can appear. Here we report an interaction between exciton and charges enabled by unusual quantum confinement in two-dimensional moiré superlattices, which results in many-body ground states composed of moiré excitons and correlated electron lattices. In an H-stacked (60o-twisted) WS2/WSe2 heterobilayer, we found an interlayer moiré exciton whose hole is surrounded by its partner electron's wavefunction distributed among three adjacent moiré traps. This three-dimensional excitonic structure enables large in-plane electrical quadrupole moments in addition to the vertical dipole. Upon doping, the quadrupole facilitates the binding of interlayer moiré excitons to the charges in neighbouring moiré cells, forming intercell charged exciton complexes. Our work provides a framework for understanding and engineering emergent exciton many-body states in correlated moiré charge orders.

10.
Phys Rev Lett ; 133(8): 086501, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39241712

RESUMO

Moiré superlattices of layered transition metal dichalcogenides are proven to host periodic electron crystals due to strong correlation effects. These electron crystals can also be intertwined with intricate magnetic phenomena. In this Letter, we present our findings on the moiré exchange effect, resulting from the modulation of local magnetic moments by electron crystals within well-aligned WSe_{2}/WS_{2} heterobilayers. Employing polarization-resolved magneto-optical spectroscopy, we unveil a high-energy excitonic resonance near one hole per moiré unit cell (v=-1), which possesses a giant g factor several times greater than the already very large g factor of the WSe_{2} A exciton in this heterostructure. Supported by continuum model calculations, these high-energy states are found to be dark excitons brightened through Umklapp scattering from the moiré mini-Brillouin zone. When the carriers form a Mott insulating state near v=-1, the Coulomb exchange between doped carriers and excitons forms an effective magnetic field with moiré periodicity. This moiré exchange effect gives rise to the observed giant g factor for the excitonic Umklapp state.

11.
Nature ; 560(7718): 336-339, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30038286

RESUMO

A ferroelectric is a material with a polar structure whose polarity can be reversed (switched) by applying an electric field1,2. In metals, itinerant electrons screen electrostatic forces between ions, which explains in part why polar metals are very rare3-7. Screening also excludes external electric fields, apparently ruling out the possibility of ferroelectric switching. However, in principle, a thin enough polar metal could be sufficiently penetrated by an electric field to have its polarity switched. Here we show that the topological semimetal WTe2 provides an embodiment of this principle. Although monolayer WTe2 is centro-symmetric and thus non-polar, the stacked bulk structure is polar. We find that two- or three-layer WTe2 exhibits spontaneous out-of-plane electric polarization that can be switched using gate electrodes. We directly detect and quantify the polarization using graphene as an electric-field sensor8. Moreover, the polarization states can be differentiated by conductivity and the carrier density can be varied to modify the properties. The temperature at which polarization vanishes is above 350 kelvin, and even when WTe2 is sandwiched between graphene layers it retains its switching capability at room temperature, demonstrating a robustness suitable for applications in combination with other two-dimensional materials9-12.

12.
Microsc Microanal ; 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39196820

RESUMO

Magnetic dopants in three-dimensional topological insulators (TIs) offer a promising avenue for realizing the quantum anomalous Hall effect (QAHE) without the necessity for an external magnetic field. Understanding the relationship between site occupancy of magnetic dopant elements and their effect on macroscopic property is crucial for controlling the QAHE. By combining atomic-scale energy-dispersive X-ray spectroscopy (EDS) maps obtained by aberration-corrected scanning transmission electron microscopy (AC-STEM) and novel data processing methodologies, including semi-automatic lattice averaging and frame registration, we have determined the substitutional sites of Mn atoms within the 1.2% Mn-doped Sb2Te3 crystal. More importantly, the methodology developed in this study extends beyond Mn-doped Sb2Te3 to other quantum materials, traditional semiconductors, and even electron irradiation sensitive materials.

13.
Nano Lett ; 23(17): 8310-8318, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37640372

RESUMO

Recent emergence of low-dimensional unconventional superconductors and their exotic interface properties calls for new approaches to probe the pairing symmetry, a fundamental and frequently elusive property of the superconducting condensate. Here, we introduce the unique capability of tunneling Andreev reflection (TAR) to probe unconventional pairing symmetry, utilizing the sensitivity of this technique to specific Andreev reflections. Specifically, suppression of the lowest-order Andreev reflection due to quantum interference but emergence of the higher-order Andreev processes provides direct evidence of the sign-changing order parameter in the paradigmatic FeSe superconductor. TAR spectroscopy also reveals two superconducting gaps, points to a possibility of a nodal gap structure, and directly confirms that superconductivity is locally suppressed along the nematic twin boundary, with preferential and near-complete suppression of the larger energy gap. Our findings therefore enable new, atomic-scale insight into microscopic, inhomogeneous, and interfacial properties of emerging quantum materials.

14.
Nano Lett ; 23(10): 4654-4659, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37155691

RESUMO

When a topological insulator is incorporated into a Josephson junction, the system is predicted to reveal the fractional Josephson effect with a 4π-periodic current-phase relation. Here, we report the measurement of a 4π-periodic switching current through an asymmetric SQUID, formed by the higher-order topological insulator WTe2. Contrary to the established opinion, we show that a high asymmetry in critical current and negligible loop inductance are not sufficient by themselves to reliably measure the current-phase relation. Instead, we find that our measurement is heavily influenced by additional inductances originating from the self-formed PdTex inside the junction. We therefore develop a method to numerically recover the current-phase relation of the system and find the 1.5 µm long junction to be best described in the short ballistic limit. Our results highlight the complexity of subtle inductance effects that can give rise to misleading topological signatures in transport measurements.

15.
Nano Lett ; 23(7): 2822-2830, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36940166

RESUMO

New pathways to controlling the morphology of superconducting vortex lattices─and their subsequent dynamics─are required to guide and scale vortex world-lines into a computing platform. We have found that the nematic twin boundaries align superconducting vortices in the adjacent terraces due to the incommensurate potential between vortices surrounding twin boundaries and those trapped within them. With the varying density and morphology of twin boundaries, the vortex lattice assumes several distinct structural phases, including square, regular, and irregular one-dimensional lattices. Through concomitant analysis of vortex lattice models, we have inferred the characteristic energetics of the twin boundary potential and furthermore predicted the existence of geometric size effects as a function of increasing confinement by the twin boundaries. These findings extend the ideas of directed control over vortex lattices to intrinsic topological defects and their self-organized networks, which have direct implications for the future design and control of strain-based topological quantum computing architectures.

16.
Nano Lett ; 23(18): 8426-8435, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37494638

RESUMO

The use of work-function-mediated charge transfer has recently emerged as a reliable route toward nanoscale electrostatic control of individual atomic layers. Using α-RuCl3 as a 2D electron acceptor, we are able to induce emergent nano-optical behavior in hexagonal boron nitride (hBN) that arises due to interlayer charge polarization. Using scattering-type scanning near-field optical microscopy (s-SNOM), we find that a thin layer of α-RuCl3 adjacent to an hBN slab reduces the propagation length of hBN phonon polaritons (PhPs) in significant excess of what can be attributed to intrinsic optical losses. Concomitant nano-optical spectroscopy experiments reveal a novel resonance that aligns energetically with the region of excess PhP losses. These experimental observations are elucidated by first-principles density-functional theory and near-field model calculations, which show that the formation of a large interfacial dipole suppresses out-of-plane PhP propagation. Our results demonstrate the potential utility of charge-transfer heterostructures for tailoring optoelectronic properties of 2D insulators.

17.
Nat Mater ; 21(9): 1029-1034, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35710631

RESUMO

Spin-orbit torque (SOT)-driven deterministic control of the magnetic state of a ferromagnet with perpendicular magnetic anisotropy is key to next-generation spintronic applications including non-volatile, ultrafast and energy-efficient data-storage devices. However, field-free deterministic switching of perpendicular magnetization remains a challenge because it requires an out-of-plane antidamping torque, which is not allowed in conventional spin-source materials such as heavy metals and topological insulators due to the system's symmetry. The exploitation of low-crystal symmetries in emergent quantum materials offers a unique approach to achieve SOTs with unconventional forms. Here we report an experimental realization of field-free deterministic magnetic switching of a perpendicularly polarized van der Waals magnet employing an out-of-plane antidamping SOT generated in layered WTe2, a quantum material with a low-symmetry crystal structure. Our numerical simulations suggest that the out-of-plane antidamping torque in WTe2 is essential to explain the observed magnetization switching.

18.
Nano Lett ; 22(24): 10134-10139, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36475690

RESUMO

MnBi2Te4 is a van der Waals topological insulator with intrinsic intralayer ferromagnetic exchange and A-type antiferromagnetic interlayer coupling. Theoretically, it belongs to a class of structurally centrosymmetric crystals whose layered antiferromagnetic order breaks inversion symmetry for even layer numbers, making optical second harmonic generation (SHG) an ideal probe of the coupling between the crystal and magnetic structures. Here, we perform magnetic field and temperature-dependent SHG measurements on MnBi2Te4 flakes ranging from bulk to monolayer thickness. We find that the dominant SHG signal from MnBi2Te4 is unexpectedly unrelated to both magnetic state and layer number. We suggest that surface SHG is the likely source of the observed strong SHG, whose symmetry matches that of the MnBi2Te4-vacuum interface. Our results highlight the importance of considering the surface contribution to inversion symmetry-breaking in van der Waals centrosymmetric magnets.

19.
Nano Lett ; 22(14): 5674-5680, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35759639

RESUMO

The quantum spin Hall (QSH) effect, characterized by topologically protected spin-polarized edge states, was recently demonstrated in monolayers of the transition metal dichalcogenide (TMD) WTe2. However, the robustness of this topological protection remains largely unexplored in van der Waals heterostructures containing one or more layers of a QSH insulator. In this work, we use scanning tunneling microscopy and spectroscopy (STM/STS) to explore the topological nature of twisted bilayer (tBL) WTe2. At the tBL edges, we observe the characteristic spectroscopic signatures of the QSH edge states. For small twist angles, a rectangular moiré pattern develops, which results in local modifications of the band structure. Using first-principles calculations, we quantify the interactions in tBL WTe2 and its topological edge states as a function of interlayer distance and conclude that it is possible to engineer the topology of WTe2 bilayers via the twist angle as well as interlayer interactions.

20.
Nano Lett ; 22(5): 1946-1953, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35226804

RESUMO

The ability to create nanometer-scale lateral p-n junctions is essential for the next generation of two-dimensional (2D) devices. Using the charge-transfer heterostructure graphene/α-RuCl3, we realize nanoscale lateral p-n junctions in the vicinity of graphene nanobubbles. Our multipronged experimental approach incorporates scanning tunneling microscopy (STM) and spectroscopy (STS) and scattering-type scanning near-field optical microscopy (s-SNOM) to simultaneously probe the electronic and optical responses of nanobubble p-n junctions. Our STM/STS results reveal that p-n junctions with a band offset of ∼0.6 eV can be achieved with widths of ∼3 nm, giving rise to electric fields of order 108 V/m. Concurrent s-SNOM measurements validate a point-scatterer formalism for modeling the interaction of surface plasmon polaritons (SPPs) with nanobubbles. Ab initio density functional theory (DFT) calculations corroborate our experimental data and reveal the dependence of charge transfer on layer separation. Our study provides experimental and conceptual foundations for generating p-n nanojunctions in 2D materials.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa