RESUMO
BACKGROUND: Bone marrow-derived endothelial progenitor cells (EPCs) play a dynamic role in maintaining the structure and function of blood vessels. But how these cells maintain their growth and angiogenic capacity under bone marrow hypoxic niche is still unclear. This study aims to explore the mechanisms from a perspective of cellular metabolism. METHODS: XFe96 Extracellular Flux Analyzer was used to analyze the metabolic status of EPCs. Gas Chromatography-Mass Spectrometry (GC-MS) was used to trace the carbon movement of 13C-labeled glucose and glutamine under 1 % O2 (hypoxia) and â¼20 % O2 (normoxia). Moreover, RNA interference, targeting isocitrate dehydrogenase-1 (IDH1) and IDH2, was used to inhibit the reverse tricarboxylic acid (TCA) cycle and analyze metabolic changes via isotope tracing as well as changes in cell growth and angiogenic potential under hypoxia. The therapeutic potential of EPCs under hypoxia was investigated in the ischemic hindlimb model. RESULTS: Compared with normoxic cells, hypoxic cells showed increased glycolysis and decreased mitochondrial respiration. Isotope metabolic tracing revealed that under hypoxia, the forward TCA cycle was decreased and the reverse TCA cycle was enhanced, mediating the conversion of α-ketoglutarate (α-KG) into isocitrate/citrate, and de novo lipid synthesis was promoted. Downregulation of IDH1 or IDH2 under hypoxia suppressed the reverse TCA cycle, attenuated de novo lipid synthesis (DNL), elevated α-KG levels, and decreased the expression of hypoxia inducible factor-1α (HIF-1α) and vascular endothelial growth factor A (VEGFA), eventually inhibiting the growth and angiogenic capacity of EPCs. Importantly, the transplantation of hypoxia-cultured EPCs in a mouse model of limb ischemia promoted new blood vessel regeneration and blood supply recovery in the ischemic area better than the transplantation of normoxia-cultured EPCs. CONCLUSIONS: Under hypoxia, the IDH1- and IDH2-mediated reverse TCA cycle promotes glutamine-derived de novo lipogenesis and stabilizes the expression of α-KG and HIF-1α, thereby enhancing the growth and angiogenic capacity of EPCs.
Assuntos
Células Progenitoras Endoteliais , Animais , Camundongos , Medula Óssea/metabolismo , Hipóxia Celular , Células Progenitoras Endoteliais/metabolismo , Glutamina/metabolismo , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Isquemia/metabolismo , Isótopos/metabolismo , Lipídeos , Lipogênese , Fator A de Crescimento do Endotélio Vascular/metabolismoRESUMO
Expansion of bone marrow-derived endothelial progenitor cells (EPCs) in vitro to obtain required cell numbers for therapeutic applications faces the challenge of growing cell senescence under the traditional normoxic culture condition. We previously found that 1% O2 hypoxic culture condition is favorable for reducing senescence of EPCs, but the mechanisms underlying the favorability are still unclear. Here, we found that, compared with normoxia, hypoxia induced a shift in lactate dehydrogenase (LDH) isozyme profile, which manifested as decreased LDH2 and LDH1 and increased LDH5, LDH4 and total LDHs. Moreover, under hypoxia, EPCs presented higher LDH activity, which could promote the conversion of pyruvate to lactate, as well as a higher level of NAD+, Bcl2 interacting protein 3 (BNIP3) expression and mitophagy. Additionally, under hypoxia, knock-down of the LDHA subunit increased the LDH2 and LDH1 levels and knock-down of the LDHB subunit increased the LDH5 level, while the simultaneous knock-down of LDHA and LDHB reduced total LDHs and NAD+ level. Inhibition of NAD+ recycling reduced BNIP3 expression and mitophagy and promoted cell senescence. Taken together, these data demonstrated that 1% O2 hypoxia induces a shift in the LDH isozyme profile, promotes NAD+ recycling, increases BNIP3 expression and mitophagy, and reduces EPC senescence. Our findings contribute to a better understanding of the connection between hypoxic culture conditions and the senescence of bone marrow-derived EPCs and provide a novel strategy to improve in vitro expansion of EPCs.
Assuntos
Células Progenitoras Endoteliais , NAD , Humanos , NAD/metabolismo , Células Progenitoras Endoteliais/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Medula Óssea/metabolismo , Hipóxia/genética , Hipóxia/metabolismo , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/metabolismo , Ácido Láctico/metabolismo , Senescência CelularRESUMO
The benefits of hypoxia for maintaining the stemness of cultured human bone marrow-derived endothelial progenitor cells (BM EPCs) have previously been demonstrated but the mechanisms responsible remain unclear. Growing evidences suggest that cellular metabolism plays an important role in regulating stem cell fate and self-renewal. Here we aimed to detect the changes of glucose metabolism and to explore its role on maintaining the stemness of BM EPCs under hypoxia. We identified the metabolic status of BM EPCs by using extracellular flux analysis, LC-MS/MS, and 13C tracing HPLC-QE-MS, and found that hypoxia induced glucose metabolic reprogramming, which manifested as increased glycolysis and pentose phosphate pathway (PPP), decreased tricarboxylic acid (TCA) and mitochondrial respiration. We further pharmacologically altered the metabolic status of cells by employing various of inhibitors of key enzymes of glycolysis, PPP, TCA cycle and mitochondria electron transport chain (ETC). We found that inhibiting glycolysis or PPP impaired cell proliferation either under normoxia or hypoxia. On the contrary, inhibiting pyruvate oxidation, TCA or ETC promoted cell proliferation under normoxia mimicking hypoxic conditions. Moreover, promoting pyruvate oxidation reverses the maintenance effect of hypoxia on cell stemness. Taken together, our data suggest that hypoxia induced glucose metabolic reprogramming maintains the stemness of BM EPCs, and artificial manipulation of cell metabolism can be an effective way for regulating the stemness of BM EPCs, thereby improving the efficiency of cell expansion in vitro.