Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Redox Biol ; 75: 103240, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38889621

RESUMO

T-helper 17 cells and regulatory T cells (Treg) are critical regulators in the pathogenesis of multiple sclerosis (MS) but the factors affecting Treg/Th17 balance remains largely unknown. Redox balance is crucial to maintaining immune homeostasis and reducing the severity of MS but the underlying mechanisms are unclear yet. Herein, we tested the hypothesis that peroxynitrite, a representative molecule of reactive nitrogen species (RNS), could inhibit peripheral Treg cells, disrupt Treg/Th17 balance and aggravate MS pathology by inducing nitration of interleukin-2 receptor (IL-2R) and down-regulating RAS/JNK-AP-1 signalling pathway. Experimental autoimmune encephalomyelitis (EAE) mouse model and serum samples of MS patients were used in the study. We found that the increases of 3-nitrotyrosine and IL-2R nitration in Treg cells were coincided with disease severity in the active EAE mice. Mechanistically, peroxynitrite-induced IL-2R nitration down-regulated RAS/JNK signalling pathway, subsequently impairing peripheral Treg expansion and function, increasing Teff infiltration into the central nerve system (CNS), aggravating demyelination and neurological deficits in the EAE mice. Those changes were abolished by peroxynitrite decomposition catalyst (PDC) treatment. Furthermore, transplantation of the PDC-treated-autologous Treg cells from donor EAE mice significantly decreased Th17 cells in both axillary lymph nodes and lumbar spinal cord, and ameliorated the neuropathology of the recipient EAE mice. Those results suggest that peroxynitrite could disrupt peripheral Treg/Th17 balance, and aggravate neuroinflammation and neurological deficit in active EAE/MS pathogenesis. The underlying mechanisms are related to induce the nitration of IL-2R and inhibit the RAS/JNK-AP-1 signalling pathway in Treg cells. The study highlights that targeting peroxynitrite-mediated peripheral IL-2R nitration in Treg cells could be a novel therapeutic strategy to restore Treg/Th17 balance and ameliorate MS/EAE pathogenesis. The study provides valuable insights into potential role of peripheral redox balance in maintaining CNS immune homeostasis.

2.
Commun Biol ; 5(1): 495, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35614315

RESUMO

The chondrogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) has been used in the treatment and repair of cartilage defects; however, the in-depth regulatory mechanisms by which RNA modifications are involved in this process are still poorly understood. Here, we found that Sox9, a critical transcription factor that mediates chondrogenic differentiation, exhibited enhanced translation by ribosome sequencing in chondrogenic pellets, which was accompanied by increased 5-methylcytosine (m5C) and N6-methyladenosine (m6A) levels. Nsun4-mediated m5C and Mettl3-mediated m6A modifications were required for Sox9-regulated chondrogenic differentiation. Interestingly, we showed that in the 3'UTR of Sox9 mRNA, Nsun4 catalyzed the m5C modification and Mettl3 catalyzed the m6A modification. Furthermore, we found that Nsun4 and Mettl3 co-regulated the translational reprogramming of Sox9 via the formation of a complex. Surface plasmon resonance (SPR) assays showed that this complex was assembled along with the recruitment of Ythdf2 and eEF1α-1. Moreover, BMSCs overexpressing Mettl3 and Nsun4 can promote the repair of cartilage defects in vivo. Taken together, our study demonstrates that m5C and m6A co-regulate the translation of Sox9 during the chondrogenic differentiation of BMSCs, which provides a therapeutic target for clinical implications.


Assuntos
Condrogênese , Células-Tronco Mesenquimais , Adenosina , Diferenciação Celular/genética , Condrogênese/genética , RNA Mensageiro
3.
IEEE Trans Med Imaging ; 25(10): 1392-404, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17024842

RESUMO

We address the problem of image formation in transmission tomography when metal objects of known composition and shape, but unknown pose, are present in the scan subject. Using an alternating minimization (AM) algorithm, derived from a model in which the detected data are viewed as Poisson-distributed photon counts, we seek to eliminate the streaking artifacts commonly seen in filtered back projection images containing high-contrast objects. We show that this algorithm, which minimizes the I-divergence (or equivalently, maximizes the log-likelihood) between the measured data and model-based estimates of the means of the data, converges much faster when knowledge of the high-density materials (such as brachytherapy applicators or prosthetic implants) is exploited. The algorithm incorporates a steepest descent-based method to find the position and orientation (collectively called the pose) of the known objects. This pose is then used to constrain the image pixels to their known attenuation values, or, for example, to form a mask on the "missing" projection data in the shadow of the objects. Results from two-dimensional simulations are shown in this paper. The extension of the model and methods used to three dimensions is outlined.


Assuntos
Artefatos , Inteligência Artificial , Reconhecimento Automatizado de Padrão/métodos , Próteses e Implantes , Intensificação de Imagem Radiográfica/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Metais , Imagens de Fantasmas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Tomografia Computadorizada por Raios X/instrumentação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa