Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Brain ; 147(4): 1571-1586, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37787182

RESUMO

Arteriovenous malformations (AVMs) are fast-flow vascular malformations and refer to important causes of intracerebral haemorrhage in young adults. Getting deep insight into the genetic pathogenesis of AVMs is necessary. Herein, we identified two vital missense variants of G protein-coupled receptor (GPCR) associated sorting protein 1 (GPRASP1) in AVM patients for the first time and congruously determined to be loss-of-function variants in endothelial cells. GPRASP1 loss-of-function caused endothelial dysfunction in vitro and in vivo. Endothelial Gprasp1 knockout mice suffered a high probability of cerebral haemorrhage, AVMs and exhibited vascular anomalies in multiple organs. GPR4 was identified to be an effective GPCR binding with GPRASP1 to develop endothelial disorders. GPRASP1 deletion activated GPR4/cAMP/MAPK signalling to disturb endothelial functions, thus contributing to vascular anomalies. Mechanistically, GPRASP1 promoted GPR4 degradation. GPRASP1 enabled GPR4 K63-linked ubiquitination, enhancing the binding of GPR4 and RABGEF1 to activate RAB5 for conversions from endocytic vesicles to endosomes, and subsequently increasing the interactions of GPR4 and ESCRT members to package GPR4 into multivesicular bodies or late endosomes for lysosome degradation. Notably, the GPR4 antagonist NE 52-QQ57 and JNK inhibitor SP600125 effectively rescued the vascular phenotype caused by endothelial Gprasp1 deletion. Our findings provided novel insights into the roles of GPRASP1 in AVMs and hinted at new therapeutic strategies.


Assuntos
Malformações Arteriovenosas , Malformações Arteriovenosas Intracranianas , Animais , Humanos , Camundongos , Malformações Arteriovenosas/genética , Células Endoteliais/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Malformações Arteriovenosas Intracranianas/genética , Malformações Arteriovenosas Intracranianas/metabolismo , Camundongos Knockout , Receptores Acoplados a Proteínas G
2.
J Biol Chem ; 298(11): 102599, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36244448

RESUMO

Mutations in the hyperpolarization-activated nucleotide-gated channel 4 (HCN4) are known to be associated with arrhythmias in which QT prolongation (delayed ventricular repolarization) is rare. Here, we identified a HCN4 mutation, HCN4-R666Q, in two sporadic arrhythmia patients with sinus bradycardia, QT prolongation, and short bursts of ventricular tachycardia. To determine the functional effect of the mutation, we conducted clinical, genetic, and functional analyses using whole-cell voltage-clamp, qPCR, Western blot, confocal microscopy, and co-immunoprecipitation. The mean current density of HEK293T cells transfected with HCN4-R666Q was lower in 24 to 36 h after transfection and was much lower in 36 to 48 h after transfection relative to cells transfected with wildtype HCN4. Additionally, we determined that the HCN4-R666Q mutant was more susceptible to ubiquitin-proteasome system-mediated protein degradation than wildtype HCN4. This decreased current density for HCN4-R666Q could be partly rescued by treatment with a proteasome inhibitor. Therefore, we conclude that HCN4-R666Q had an effect on HCN4 function in two aspects, including decreasing the current density of the channel as a biophysical effect and weakening its protein stability. Our findings provide new insights into the pathogenesis of the HCN4-R666Q mutation.


Assuntos
Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Síndrome do QT Longo , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Canais de Potássio/metabolismo , Proteólise , Nucleotídeos/metabolismo , Células HEK293 , Proteínas Musculares/metabolismo , Arritmias Cardíacas/genética , Mutação , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética
4.
J Environ Sci (China) ; 125: 691-700, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36375950

RESUMO

Oxidation of Mn(II) or As(III) by molecular oxygen is slow at pH < 9, while they can be catalytically oxidized in the presence of oxide minerals and then removed from contaminated water. However, the reaction mechanisms on simultaneous oxidation of Mn(II) and As(III) on oxide mineral surface and their accompanied removal efficiency remain unclear. This study compared Mn(II) oxidation on four common metal oxides (γ-Al2O3, CuO, α-Fe2O3 and ZnO) and investigated the simultaneous oxidation and removal of Mn(II) and As(III) through batch experiments and spectroscopic analyses. Among the tested oxides, CuO and α-Fe2O3 possess greater catalytic activity toward Mn(II) oxidation. Oxidation and removal kinetics of Mn(II) and As(III) on CuO indicate that O2 is the terminal electron acceptor for Mn(II) and As(III) oxidation on CuO, and Mn(II) acts as an electron shuttle to promote As(III) oxidation and removal. The main oxidized product of Mn(II) on CuO is high-valent MnOx species. This newly formed Mn(III) or Mn(IV) phases promote As(III) oxidation on CuO at circumneutral pH 8 and is reduced to Mn(II), which may be then released into solution. This study provides new insights into metal oxide-catalyzed oxidation of pollutants Mn(II) and As(III) and suggests that CuO should be considered as an efficient material to remediate Mn(II) and As(III) contamination.


Assuntos
Cobre , Óxidos , Oxirredução , Óxidos/química , Minerais , Concentração de Íons de Hidrogênio , Compostos de Manganês/química
5.
BMC Med ; 20(1): 463, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36447229

RESUMO

BACKGROUND: Compared with patients who require fewer antihypertensive agents, those with apparent treatment-resistant hypertension (aTRH) are at increased risk for cardiovascular and all-cause mortality, independent of blood pressure control. However, the etiopathogenesis of aTRH is still poorly elucidated. METHODS: We performed a genome-wide association study (GWAS) in first cohort including 586 aTRHs and 871 healthy controls. Next, expression quantitative trait locus (eQTL) analysis was used to identify genes that are regulated by single nucleotide polymorphisms (SNPs) derived from the GWAS. Then, we verified the genes obtained from the eQTL analysis in the validation cohort including 65 aTRHs, 96 hypertensives, and 100 healthy controls through gene expression profiling analysis and real-time quantitative polymerase chain reaction (RT-qPCR) assay. RESULTS: The GWAS in first cohort revealed four suggestive loci (1p35, 4q13.2-21.1, 5q22-23.2, and 15q11.1-q12) represented by 23 SNPs. The 23 significant SNPs were in or near LAPTM5, SDC3, UGT2A1, FTMT, and NIPA1. eQTL analysis uncovered 14 SNPs in 1p35 locus all had same regulation directions for SDC3 and LAPTM5. The disease susceptible alleles of SNPs in 1p35 locus were associated with lower gene expression for SDC3 and higher gene expression for LAPTM5. The disease susceptible alleles of SNPs in 4q13.2-21.1 were associated with higher gene expression for UGT2B4. GTEx database did not show any statistically significant eQTLs between the SNPs in 5q22-23.2 and 15q11.1-q12 loci and their influenced genes. Then, gene expression profiling analysis in the validation cohort confirmed lower expression of SDC3 in aTRH but no significant differences on LAPTM5 and UGT2B4, when compared with controls and hypertensives, respectively. RT-qPCR assay further verified the lower expression of SDC3 in aTRH. CONCLUSIONS: Our study identified a novel association of SDC3 with aTRH, which contributes to the elucidation of its etiopathogenesis and provides a promising therapeutic target.


Assuntos
Estudo de Associação Genômica Ampla , Hipertensão , Humanos , Hipertensão/tratamento farmacológico , Hipertensão/genética , Locos de Características Quantitativas/genética , Polimorfismo de Nucleotídeo Único/genética , Anti-Hipertensivos , Sindecana-3 , Glucuronosiltransferase
6.
Brain ; 142(1): 23-34, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30544177

RESUMO

Brain and spinal arteriovenous malformations are congenital lesions causing intracranial haemorrhage or permanent disability especially in young people. We investigated whether the vast majority or all brain and spinal arteriovenous malformations are associated with detectable tumour-related somatic mutations. In a cohort of 31 patients (21 with brain and 10 with spinal arteriovenous malformations), tissue and paired blood samples were analysed with ultradeep next generation sequencing of a panel of 422 common tumour genes to identify the somatic mutations. We used droplet digital polymerase chain reaction to confirm the panel sequenced mutations and identify the additional low variant frequency mutations. The association of mutation variant frequencies and clinical features were analysed. The average sequencing depth was 1077 ± 298×. High prevalence (87.1%) of KRAS/BRAF somatic mutations was found in brain and spinal arteriovenous malformations with no other replicated tumour-related mutations. The prevalence of KRAS/BRAF mutation was 81.0% (17 of 21) in brain and 100% (10 of 10) in spinal arteriovenous malformations. We detected activating BRAF mutations and two novel mutations in KRAS (p.G12A and p.S65_A66insDS) in CNS arteriovenous malformations for the first time. The mutation variant frequencies were negatively correlated with nidus volumes of brain (P = 0.038) and spinal (P = 0.028) arteriovenous malformations but not ages. Our findings support a causative role of somatic tumour-related mutations of KRAS/BRAF in the overwhelming majority of brain and spinal arteriovenous malformations. This pathway homogeneity and high prevalence implies the development of targeted therapies with RAS/RAF pathway inhibitors without the necessity of tissue genetic diagnosis.10.1093/brain/awy307_video1awy307media15978667388001.


Assuntos
Malformações Arteriovenosas/genética , Encéfalo/anormalidades , Predisposição Genética para Doença/genética , Malformações do Sistema Nervoso/genética , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Medula Espinal/anormalidades , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Sequenciamento de Nucleotídeos em Larga Escala/estatística & dados numéricos , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Prevalência , Análise de Sequência de DNA/estatística & dados numéricos , Adulto Jovem
7.
Geochem Trans ; 19(1): 12, 2018 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-29934914

RESUMO

Recently, the wide application of CuO nanoparticles (NPs) in engineering field inevitably leads to its release into various geologic settings, which has aroused great concern about the geochemical behaviors of CuO NPs due to its high surface reactivity and impact on the fate of co-existing contaminants. However, the redox transformation of pollutants mediated by CuO NPs and the underlying mechanism still remain poorly understood. Here, we studied the interaction of CuO NPs with As(III), and explored the reaction pathways using batch experiments and multiple spectroscopic techniques. The results of in situ quick scanning X-ray absorption spectroscopy (Q-XAS) analysis verified that CuO NPs is capable of catalytically oxidize As(III) under dark conditions efficiently at a wide range of pHs. As(III) was firstly adsorbed on CuO NPs surface and then gradually oxidized to As(V) with dissolved O2 as the terminal electron acceptor. As(III) adsorption increased to the maximum at a pH close to PZC of CuO NPs (~ pH 9.2), and then sharply decreased with increasing pH, while the oxidation capacity monotonically increased with pH. X-ray photoelectron spectroscopy and electron paramagnetic resonance characterization of samples from batch experiments indicated that two pathways may be involved in As(III) catalytic oxidation: (1) direct electron transfer from As(III) to Cu(II), followed by concomitant re-oxidation of the produced Cu(I) by dissolved O2 back to Cu(II) on CuO NPs surface, and (2) As(III) oxidation by reactive oxygen species (ROS) produced from the above Cu(I) oxygenation process. These observations facilitate a better understanding of the surface catalytic property of CuO NPs and its interaction with As(III) and other elements with variable valence in geochemical environments.

8.
J Opt Soc Am A Opt Image Sci Vis ; 35(2): 262-266, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29400893

RESUMO

We derive the initial distributions of phase and complex amplitude of accelerating beams with arbitrary predesigned hyperbolic trajectories using the caustic-design method and explore the relation between these beams and Hermite-Gaussian beams. The results show the hyperbolic accelerating beams are a larger class of beams than Hermite-Gaussian beams. When the bending parameter is an integer, the hyperbolic accelerating beams have a similar initial complex amplitude distribution and almost the same propagating characteristics as Hermite-Gaussian beams. Through the analysis of the ray-based method, we also derive an approximate expression for the initial complex amplitude of Hermite-Gaussian beams after introducing an amplitude distribution function. Although the proposed approximate expressions of complex amplitude are more complex than the usually used Hermite-Gaussian function, they explicitly indicate the information on local amplitude, wave vector, and internal ray structure (including caustics) of these beams and thus provide us clearer geometrical insights into these beams.

10.
Environ Sci Technol ; 50(11): 5651-60, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27159895

RESUMO

The toxicity, reactivity, and behavior of zinc oxide (ZnO) nanoparticles (NPs) released in the environment are highly dependent on environmental conditions. Myo-inositol hexakisphosphate (IHP), a common organic phosphate, may interact with NPs and generate new transformation products. In this study, the role of IHP in mediating the dissolution and transformation of ZnO NPs was investigated in the laboratory kinetic experiments using powder X-ray diffraction, attenuated total reflectance Fourier transform infrared spectroscopy, (31)P nuclear magnetic resonance spectroscopy, high-resolution transmission electronic microscopy, and synchrotron-based extended X-ray absorption fine structure spectroscopy. The results indicate that IHP shows a dissolution-precipitation effect, which is different from citrate and EDTA that only enhances Zn dissolution. The enhanced dissolution and transformation of ZnO NPs by IHP (<0.5 h) is found to be strikingly faster than that induced by inorganic phosphate (Pi, > 3.0 h) at pH 7.0, and the reaction rate increases with decreasing pH and increasing IHP concentration. Multitechnique analyses reveal that interaction of ZnO NPs with IHP induces rapid transformation of ZnO NPs into zinc phytate complexes initially and poorly crystalline zinc phytate-like (Zn-IHP) phase finally. Additionally, ZnO NPs preferentially react with IHP and transform to Zn-IHP when Pi and IHP concurrently coexist in a system. Overall, results from this study contribute to an improved understanding of the role of organic phosphates (e.g., IHP) in the speciation and structural transformation of ZnO NPs, which can be leveraged for remediation of ZnO-polluted water and soils.


Assuntos
Ácido Fítico , Óxido de Zinco/química , Nanopartículas/química , Solubilidade , Difração de Raios X
11.
Mol Biol Rep ; 43(11): 1227-1232, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27558095

RESUMO

The fibrillin-1 (FBN1) gene mutations result in Marfan syndrome (MFS) and have a variety of phenotypic variations. This disease is involved in the skeletal, ocular and cardiovascular system. Here we analyzed genotype-phenotype correlation in two Chinese families with MFS. Two patients with thoracic aortic aneurysms and dissections were diagnosed as MFS according to the revised Ghent criteria. Peripheral blood samples were collected and genomic DNAs were isolated from available cases, namely, patient-1 and his daughter and son, and patient-2 and his parents. According to the next-generation sequencing results, the mutations in FBN1 were confirmed by direct sequencing. A heterozygous frameshift mutation in exon 12 of FBN1 was found in the proband-1 and his daughter. They showed cardiovascular phenotype thoracic aortic aneurysms and dissections, a life-threatening vascular disease, and atrial septal defect respectively. One de novo missense mutation in exon 50 of FBN1 was identified only in the patient-2, showing aortic root aneurysm and aortic root dilatation. Intriguingly, two novel mutations mainly caused the cardiovascular complications in affected family members. No meaningful mutations were found in these two patients by screening all exons of 428 genes related with cardiovascular disease. The high incidence of cardiovascular manifestations might be associated with the two novel mutations in exon 12 and 50 of FBN1.


Assuntos
Aneurisma da Aorta Torácica/genética , Dissecção Aórtica/genética , Povo Asiático/genética , Fibrilina-1/genética , Síndrome de Marfan/genética , Adolescente , Adulto , China , Éxons , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Masculino , Mutação , Linhagem , Análise de Sequência de DNA , Adulto Jovem
12.
Environ Sci Technol ; 48(12): 6735-42, 2014 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-24871399

RESUMO

Inositol hexakisphosphates are the most abundant organic phosphates (OPs) in most soils and sediments. Adsorption, desorption, and precipitation reactions at environmental interfaces govern the reactivity, speciation, mobility, and bioavailability of inositol hexakisphosphates in terrestrial and aquatic environments. However, surface complexation and precipitation reactions of inositol hexakisphosphates on soil minerals have not been well understood. Here we investigate the surface complexation-precipitation process and mechanism of myo-inositol hexakisphosphate (IHP, phytate) on amorphous aluminum hydroxide (AAH) using macroscopic sorption experiments and multiple spectroscopic tools. The AAH (16.01 µmol m(-2)) exhibits much higher sorption density than boehmite (0.73 µmol m(-2)) and α-Al2O3 (1.13 µmol m(-2)). Kinetics of IHP sorption and accompanying OH(-) release, as well as zeta potential measurements, indicate that IHP is initially adsorbed on AAH through inner-sphere complexation via ligand exchange, followed by AAH dissolution and ternary complex formation; last, the ternary complexes rapidly transform to surface precipitates and bulk phase analogous to aluminum phytate (Al-IHP). The pH level, reaction time, and initial IHP loading evidently affect the interaction of IHP on AAH. In situ ATR-FTIR and solid-state NMR spectra further demonstrate that IHP sorbs on AAH and transforms to surface precipitates analogous to Al-IHP, consistent with the results of XRD analysis. This study indicates that active metal oxides such as AAH strongly mediate the speciation and behavior of IHP via rapid surface complexation-precipitation reactions, thus controlling the mobility and bioavailability of inositol phosphates in the environment.


Assuntos
Hidróxido de Alumínio/química , Óxido de Alumínio/química , Precipitação Química , Espectroscopia de Ressonância Magnética , Ácido Fítico/isolamento & purificação , Adsorção , Alumínio/química , Meio Ambiente , Concentração de Íons de Hidrogênio , Cinética , Fósforo/química , Espectroscopia de Infravermelho com Transformada de Fourier , Eletricidade Estática , Temperatura , Difração de Raios X
13.
Huan Jing Ke Xue ; 45(9): 5406-5415, 2024 Sep 08.
Artigo em Chinês | MEDLINE | ID: mdl-39323158

RESUMO

In recent decades, with the intensification of human activities, atmospheric nitrogen (N) deposition has been increasing. N deposition affects carbon (C) cycling in terrestrial ecosystems, especially in fragile karst ecosystems. Karst ecosystems are considered to be an important C pool. To evaluate the impact of N deposition on soil organic C (SOC) and its fractions in karst ecosystems of China, we collected and collated 14 English literature published through the end of March 2023, yielding a total of 460 sets of experimental data. The meta-analysis examined the effect of N addition levels [low N: ≤50 kg·ï¼ˆhm2·a)-1, medium N: 50-100 kg·ï¼ˆhm2·a)-1, and high N: >100 kg·ï¼ˆhm2·a)-1, in terms of N] on SOC and its fractions [particular organic C (POC), readily oxidized organic C (ROC), microbial biomass C (MBC), and dissolved organic C (DOC)]. The results showed that N addition levels significantly affected the responses of farmland and forest soil SOC and their active fractions to N addition. Specifically, low and high N additions significantly increased SOC concentration in farmland ecosystems, whereas medium N addition significantly increased SOC concentration in forest ecosystems. In addition, soil active C fraction concentrations increased under high N addition in farmland ecosystems and under low and medium N addition in forest ecosystems. Without considering the level of N addition, N addition significantly enhanced soil organic matter (SOM) mineralization in both farmland and forest ecosystems and increased the SOC concentration in farmland ecosystems but not forest ecosystems. The responses of different active C fractions to N addition were diverse. In farmland ecosystems, the POC and ROC concentrations increased, but DOC did not change with N addition. In forest ecosystems, the DOC and POC concentrations increased, but there was no significant effect on MBC. Moreover, the response ratios (RR) of SOC and its fractions in different ecosystems to N addition were influenced by different environmental factors. In farmland ecosystems, the response ratio of SOC was related to the annual average temperature and soil pH. The response ratio of DOC was affected by the annual average temperature, mean annual precipitation, and N addition rate. The POC response ratio was related to the N addition rate. In forest ecosystems, the effects of N addition on the SOC response ratio were significantly altered by the annual average temperature, mean annual precipitation, and soil pH. However, the response ratios of DOC, POC, and MBC were not affected by the annual average temperature, mean annual precipitation, soil pH, and N addition rate. Consequently, these findings indicate that N addition could enhance soil SOC concentration and promote soil C sequestration in farmland and forest ecosystems in karst regions, but this effect relies on the level of N addition. This provides a scientific basis for predicting the soil C sink function in karst ecosystems under climate change scenarios.

14.
Protein Cell ; 15(1): 36-51, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37158785

RESUMO

Hypoxia-inducible factor (HIF-1α), a core transcription factor responding to changes in cellular oxygen levels, is closely associated with a wide range of physiological and pathological conditions. However, its differential impacts on vascular cell types and molecular programs modulating human vascular homeostasis and regeneration remain largely elusive. Here, we applied CRISPR/Cas9-mediated gene editing of human embryonic stem cells and directed differentiation to generate HIF-1α-deficient human vascular cells including vascular endothelial cells, vascular smooth muscle cells, and mesenchymal stem cells (MSCs), as a platform for discovering cell type-specific hypoxia-induced response mechanisms. Through comparative molecular profiling across cell types under normoxic and hypoxic conditions, we provide insight into the indispensable role of HIF-1α in the promotion of ischemic vascular regeneration. We found human MSCs to be the vascular cell type most susceptible to HIF-1α deficiency, and that transcriptional inactivation of ANKZF1, an effector of HIF-1α, impaired pro-angiogenic processes. Altogether, our findings deepen the understanding of HIF-1α in human angiogenesis and support further explorations of novel therapeutic strategies of vascular regeneration against ischemic damage.


Assuntos
Células Endoteliais , Fator A de Crescimento do Endotélio Vascular , Humanos , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células Endoteliais/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica , Hipóxia/metabolismo , Hipóxia Celular/fisiologia
15.
Environ Sci Technol ; 47(15): 8308-15, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23837616

RESUMO

Sorption reactions occurring at mineral/water interfaces are of fundamental importance in controlling the sequestration and bioavailability of nutrients and pollutants in aqueous environments. To advance the understanding of sorption reactions, development of new methodology is required. In this study, we applied novel (31)P solid-state nuclear magnetic resonance (NMR) spectroscopy to investigate the mechanism of phosphate sorption on aluminum hydroxides under different environmental conditions, including pH (4-10), concentration (0.1-10 mM), ionic strength (0.001-0.5 M), and reaction time (15 min-22 days). Under these conditions, the NMR results suggest formation of bidentate binuclear inner-sphere surface complexes was the dominant mechanism. However, it was found that surface wetting caused a small difference. A small amount (<3%) of monodentate mononuclear inner-sphere surface complexes was observed in addition to the majority of bidentate binuclear surface complexes on a wet paste sample prepared at pH 5, which was analyzed in situ by a double-resonance NMR technique, namely, (31)P{(27)Al} rotational echo adiabatic passage double resonance (REAPDOR). Additionally, we found that adsorbents can substantially impact phosphate sorption not only on the macroscopic sorption capacity but also on their (31)P NMR spectra. Very similar NMR peaks were observed for phosphate sorbed to gibbsite and bayerite, whereas the spectra for phosphate adsorbed to boehmite, corundum, and γ-alumina were significantly different. All of these measurements reveal that NMR spectroscopy is a useful analytical tool for studying phosphorus chemistry at environmental interfaces.


Assuntos
Hidróxido de Alumínio/química , Espectroscopia de Ressonância Magnética/métodos , Fosfatos/química
16.
Environ Int ; 173: 107847, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36842383

RESUMO

Naturally occurring oxides could react with zinc oxide (ZnO) nanoparticles (NPs) and then change its transformation and toxicity to ecological receptors. The reaction may be affected by a variety of environmental factors, yet the relevant processes and mechanisms are limitedly investigated. Natural prevalent ligands, as an important factor, can sorb on natural oxide minerals and change its surface property, finally affecting ZnO NP transformation. This study investigated the interactions of ZnO NPs with phosphorus ligands (i.e., phytate and orthophosphate) pre-sorbed γ-alumina (γ-Al2O3) via batch experiments and multi-technique analyses. A limited amount of aqueous Zn2+ is observed when the concentration of ZnO NPs is relatively low (<64.8 mg L-1) in the presence of phytate pre-sorbed γ-Al2O3. Solid Zn(II) species includes binary/ternary surface Zn(II) complexes on γ-Al2O3 with minor amounts of zinc phytate precipitates. As the concentration of ZnO NPs increases, surface Zn(II) complexes gradually transform into zinc phytate and Zn-Al layered double hydroxide (Zn-Al LDH) precipitates. The quantitative analysis indicates that, as the concentration of ZnO NPs increases from 32.4 to 388.8 mg L-1, the proportion of Zn(II) species as binary/ternary surface complexes decreases from 81.9 to 30.2%; and the proportion as zinc phytate and Zn-Al LDH increases from 17.9 to 27.6% and 0 to 43.8%, respectively. The pre-sorption of orthophosphate can also inhibit ZnO NP transformation into Zn-Al LDH precipitates on γ-Al2O3. This study suggests that natural ligands pre-existed on natural oxide minerals could greatly influence the solubility, stability, transformation, and fate of easily dissoluble metal oxides (e.g., ZnO) in the environments.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Óxido de Zinco , Óxido de Zinco/toxicidade , Óxido de Alumínio , Fósforo , Ácido Fítico , Zinco , Óxidos , Minerais , Fosfatos
17.
J Hazard Mater ; 452: 131351, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37027918

RESUMO

Al(III)-substituted ferrihydrite existing in natural soils is more common than pure ferrihydrite; however, the effects of Al(III) incorporation on the interaction between ferrihydrite, Mn(II) catalytic oxidation, and coexisting transition metal (e.g., Cr(III)) oxidation remain elusive. To address this knowledge gap, Mn(II) oxidation on synthetic Al(III)-incorporated ferrihydrite and Cr(III) oxidation on the previously formed Fe-Mn binaries were investigated in this study via batch kinetic studies combined with various spectroscopic analyses. The results indicate that Al substitution in ferrihydrite barely changes its morphology, specific surface area, or the types of surface functional groups, but increases the total amount of hydroxyl on the ferrihydrite surface and enhances its adsorption capacity toward Mn(II). Conversely, Al substitution inhibits electron transfer in ferrihydrite, thereby weakening its electrochemical catalysis on Mn(II) oxidation. Thus, the contents of Mn(III/IV) oxides with higher Mn valence states decrease, whereas those of lower Mn valence states increase. Furthermore, the number of hydroxyl radicals formed during Mn(II) oxidation on ferrihydrite decreases. These inhibitions of Al substitution on Mn(II) catalytic oxidation subsequently cause decreased Cr(III) oxidation and poor Cr(VI) immobilization. Additionally, Mn(III) in Fe-Mn binaries is confirmed to play a dominant role in Cr(III) oxidation. This research facilitates sound decision-making regarding the management of Cr-contaminated soil environments enriched with Fe and Mn.

18.
Nat Commun ; 14(1): 6833, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37884540

RESUMO

Insulin resistance is associated with many pathological conditions, and an in-depth understanding of the mechanisms involved is necessary to improve insulin sensitivity. Here, we show that ZFYVE28 expression is decreased in insulin-sensitive obese individuals but increased in insulin-resistant individuals. Insulin signaling inhibits ZFYVE28 expression by inhibiting NOTCH1 via the RAS/ERK pathway, whereas ZFYVE28 expression is elevated due to impaired insulin signaling in insulin resistance. While Zfyve28 overexpression impairs insulin sensitivity and causes lipid accumulation, Zfyve28 knockout in mice can significantly improve insulin sensitivity and other indicators associated with insulin resistance. Mechanistically, ZFYVE28 colocalizes with early endosomes via the FYVE domain, which inhibits the generation of recycling endosomes but promotes the conversion of early to late endosomes, ultimately promoting phosphorylated insulin receptor degradation. This effect disappears with deletion of the FYVE domain. Overall, in this study, we reveal that ZFYVE28 is involved in insulin resistance by promoting phosphorylated insulin receptor degradation, and ZFYVE28 may be a potential therapeutic target to improve insulin sensitivity.


Assuntos
Endossomos , Resistência à Insulina , Insulina , Receptor de Insulina , Animais , Camundongos , Proteínas de Transporte/metabolismo , Endossomos/metabolismo , Insulina/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Transdução de Sinais , Humanos , Obesidade
19.
Nat Commun ; 14(1): 7643, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37996411

RESUMO

White adipose tissue browning can promote lipid burning to increase energy expenditure and improve adiposity. Here, we show that Slc35d3 expression is significantly lower in adipose tissues of obese mice. While adipocyte-specific Slc35d3 knockin is protected against diet-induced obesity, adipocyte-specific Slc35d3 knockout inhibits white adipose tissue browning and causes decreased energy expenditure and impaired insulin sensitivity in mice. Mechanistically, we confirm that SLC35D3 interacts with the NOTCH1 extracellular domain, which leads to the accumulation of NOTCH1 in the endoplasmic reticulum and thus inhibits the NOTCH1 signaling pathway. In addition, knockdown of Notch1 in mouse inguinal white adipose tissue mediated by orthotopic injection of AAV8-adiponectin-shNotch1 shows considerable improvement in obesity and glucolipid metabolism, which is more pronounced in adipocyte-specific Slc35d3 knockout mice than in knockin mice. Overall, in this study, we reveal that SLC35D3 is involved in obesity via NOTCH1 signaling, and low adipose SLC35D3 expression in obesity might be a therapeutic target for obesity and associated metabolic disorders.


Assuntos
Tecido Adiposo Marrom , Tecido Adiposo Branco , Obesidade , Receptores Notch , Animais , Camundongos , Adipócitos/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Dieta Hiperlipídica , Metabolismo Energético , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/metabolismo , Transdução de Sinais , Receptores Notch/metabolismo
20.
Protein Cell ; 14(6): 398-415, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37285263

RESUMO

Hair loss affects millions of people at some time in their life, and safe and efficient treatments for hair loss are a significant unmet medical need. We report that topical delivery of quercetin (Que) stimulates resting hair follicles to grow with rapid follicular keratinocyte proliferation and replenishes perifollicular microvasculature in mice. We construct dynamic single-cell transcriptome landscape over the course of hair regrowth and find that Que treatment stimulates the differentiation trajectory in the hair follicles and induces an angiogenic signature in dermal endothelial cells by activating HIF-1α in endothelial cells. Skin administration of a HIF-1α agonist partially recapitulates the pro-angiogenesis and hair-growing effects of Que. Together, these findings provide a molecular understanding for the efficacy of Que in hair regrowth, which underscores the translational potential of targeting the hair follicle niche as a strategy for regenerative medicine, and suggest a route of pharmacological intervention that may promote hair regrowth.


Assuntos
Células Endoteliais , Quercetina , Camundongos , Animais , Quercetina/farmacologia , Cabelo , Folículo Piloso , Alopecia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa