Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Bacteriol ; 202(19)2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32900865

RESUMO

Hibernation-promoting factor (HPF) is a ribosomal accessory protein that inactivates ribosomes during bacterial starvation. In Pseudomonas aeruginosa, HPF protects ribosome integrity while the cells are dormant. The sequence of HPF has diverged among bacteria but contains conserved charged amino acids in its two alpha helices that interact with the rRNA. Here, we characterized the function of HPF in P. aeruginosa by performing mutagenesis of the conserved residues and then assaying mutant HPF alleles for their ability to protect ribosome integrity of starved P. aeruginosa cells. The results show that HPF functionally tolerates point mutations in charged residues and in the conserved Y71 residue as well as a C-terminal truncation. Double and triple mutations of charged residues in helix 1 in combination with a Y71F substitution reduce HPF activity. Screening for single point mutations that caused impaired HPF activity identified additional substitutions in the two HPF alpha helices. However, alanine substitutions in equivalent positions restored HPF activity, indicating that HPF is tolerant to mutations that do not disrupt the protein structure. Surprisingly, heterologous HPFs from Gram-positive bacteria that have long C-terminal domains functionally complement the P. aeruginosa Δhpf mutant, suggesting that HPF may play a similar role in ribosome protection in other bacterial species. Collectively, the results show that HPF has diverged among bacteria and is tolerant to most single amino acid substitutions. The Y71 residue in combination with helix 1 is important for the functional role of HPF in ribosome protection during bacterial starvation and resuscitation of the bacteria from dormancy.IMPORTANCE In most environments, bacteria experience conditions where nutrients may be readily abundant or where nutrients are limited. Under nutrient limitation conditions, even non-spore-forming bacteria may enter a dormant state. Dormancy is accompanied by a variety of cellular physiological changes that are required for the cells to remain viable during dormancy and to resuscitate when nutrients become available. Among the physiological changes that occur in dormant bacteria is the inactivation and preservation of ribosomes by the dormancy protein, hibernation-promoting factor (HPF). In this study, we characterized the activity of HPF of Pseudomonas aeruginosa, an opportunistic pathogen that causes persistent infections, and analyzed the role of HPF in ribosome protection and bacterial survival during dormancy.


Assuntos
Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Pseudomonas aeruginosa/crescimento & desenvolvimento , RNA Ribossômico/química , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Ribossomos/química , Alinhamento de Sequência
2.
Sci Rep ; 14(1): 10498, 2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714794

RESUMO

Prominin 1 (PROM1) is a pentaspan transmembrane glycoprotein localized on the nascent photoreceptor discs. Mutations in PROM1 are linked to various retinal diseases. In this study, we assessed the role of PROM1 in photoreceptor biology and physiology using the PROM1 knockout murine model (rd19). Our study found that PROM1 is essential for vision and photoreceptor development. We found an early reduction in photoreceptor response beginning at post-natal day 12 (P12) before eye opening in the absence of PROM1 with no apparent loss in photoreceptor cells. However, at this stage, we observed an increased glial cell activation, indicative of cell damage. Contrary to our expectations, dark rearing did not mitigate photoreceptor degeneration or vision loss in PROM1 knockout mice. In addition to physiological defects seen in PROM1 knockout mice, ultrastructural analysis revealed malformed outer segments characterized by whorl-like continuous membranes instead of stacked disks. In parallel to the reduced rod response at P12, proteomics revealed a significant reduction in the levels of protocadherin, a known interactor of PROM1, and rod photoreceptor outer segment proteins, including rhodopsin. Overall, our results underscore the indispensable role of PROM1 in photoreceptor development and maintenance of healthy vision.


Assuntos
Antígeno AC133 , Animais , Camundongos , Antígeno AC133/metabolismo , Antígeno AC133/genética , Camundongos Knockout , Células Fotorreceptoras de Vertebrados/metabolismo , Degeneração Retiniana/genética , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Segmento Externo das Células Fotorreceptoras da Retina/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Rodopsina/metabolismo , Rodopsina/genética
3.
Cells ; 10(6)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34201019

RESUMO

Signaling networks guide stem cells during their lineage specification and terminal differentiation. Primary cilium, an antenna-like protrusion, directly or indirectly plays a significant role in this guidance. All stem cells characterized so far have primary cilia. They serve as entry- or check-points for various signaling events by controlling the signal transduction and stability. Thus, defects in the primary cilia formation or dynamics cause developmental and health problems, including but not limited to obesity, cardiovascular and renal anomalies, hearing and vision loss, and even cancers. In this review, we focus on the recent findings of how primary cilium controls various signaling pathways during stem cell differentiation and identify potential gaps in the field for future research.


Assuntos
Cílios/metabolismo , Células-Tronco/citologia , Animais , Diferenciação Celular , Proliferação de Células , Humanos , Transdução de Sinais
4.
Oncogene ; 40(37): 5651-5664, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34326467

RESUMO

Metastatic breast cancer causes most breast cancer-associated deaths, especially in triple negative breast cancers (TNBC). The metastatic drivers of TNBCs are still poorly understood, and effective treatment non-existent. Here we reveal that the presence of Aurora-A Kinase (AURKA) in the nucleus and metastatic dissemination are molecularly connected through HIF1 (Hypoxia-Inducible Factor-1) signaling. Nuclear AURKA activates transcription of "hypoxia-induced genes" under normoxic conditions (pseudohypoxia) and without upregulation of oxygen-sensitive HIF1A subunit. We uncover that AURKA preferentially binds to HIF1B and co-localizes with the HIF complex on DNA. The mass-spectrometry analysis of the AURKA complex further confirmed the presence of CBP and p300 along with other TFIIB/RNApol II components. Importantly, the expression of multiple HIF-dependent genes induced by nuclear AURKA (N-AURKA), including migration/invasion, survival/death, and stemness, promote early cancer dissemination. These results indicate that nuclear, but not cytoplasmic, AURKA is a novel driver of early metastasis. Analysis of clinical tumor specimens revealed a correlation between N-AURKA presence and decreased patient survival. Our results establish a mechanistic link between two critical pathways in cancer metastasis, identifying nuclear AURKA as a crucial upstream regulator of the HIF1 transcription complex and a target for anti-metastatic therapy.


Assuntos
Aurora Quinase A , Comunicação Celular , Núcleo Celular , Proteína p300 Associada a E1A , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia , Transdução de Sinais , Neoplasias de Mama Triplo Negativas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa