RESUMO
Discovering potent human monoclonal antibodies (mAbs) targeting the Plasmodium falciparum circumsporozoite protein (PfCSP) on sporozoites (SPZ) and elucidating their mechanisms of neutralization will facilitate translation for passive prophylaxis and aid next-generation vaccine development. Here, we isolated a neutralizing human mAb, L9 that preferentially bound NVDP minor repeats of PfCSP with high affinity while cross-reacting with NANP major repeats. L9 was more potent than six published neutralizing human PfCSP mAbs at mediating protection against mosquito bite challenge in mice. Isothermal titration calorimetry and multiphoton microscopy showed that L9 and the other most protective mAbs bound PfCSP with two binding events and mediated protection by killing SPZ in the liver and by preventing their egress from sinusoids and traversal of hepatocytes. This study defines the subdominant PfCSP minor repeats as neutralizing epitopes, identifies an in vitro biophysical correlate of SPZ neutralization, and demonstrates that the liver is an important site for antibodies to prevent malaria.
Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antiprotozoários/imunologia , Antimaláricos/imunologia , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Esporozoítos/imunologia , Adolescente , Adulto , Animais , Linhagem Celular , Linhagem Celular Tumoral , Epitopos/imunologia , Feminino , Células HEK293 , Hepatócitos/imunologia , Hepatócitos/parasitologia , Humanos , Fígado/imunologia , Fígado/parasitologia , Malária/imunologia , Malária/parasitologia , Vacinas Antimaláricas/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Adulto JovemRESUMO
Plasmodium falciparum (Pf) is a major cause of human malaria and is transmitted by infected Anopheles mosquitoes. The initial asymptomatic infection is characterized by parasite invasion of hepatocytes, followed by massive replication generating schizonts with blood-infective merozoites. Hepatocytes can be categorized by their zonal location and metabolic functions within a liver lobule. To understand specific host conditions that affect infectivity, we studied Pf parasite liver stage development in relation to the metabolic heterogeneity of fresh human hepatocytes. We found selective preference of different Pf strains for a minority of hepatocytes, which are characterized by the particular presence of glutamine synthetase (hGS). Schizont growth is significantly enhanced by hGS uptake early in development, showcasing a novel import system. In conclusion, Pf development is strongly determined by the differential metabolic status in hepatocyte subtypes. These findings underscore the importance of detailed understanding of hepatocyte host-Pf interactions and may delineate novel pathways for intervention strategies.
Assuntos
Glutamato-Amônia Ligase/metabolismo , Hepatócitos/parasitologia , Malária Falciparum/parasitologia , Plasmodium falciparum/crescimento & desenvolvimento , Transporte Biológico/fisiologia , Proliferação de Células/fisiologia , Glucose/metabolismo , Glutamato-Amônia Ligase/antagonistas & inibidores , Humanos , Fígado/parasitologia , Fígado/patologiaRESUMO
BACKGROUND: Sporozoite invasion of hepatocytes is an essential step in the Plasmodium life-cycle and has similarities, at the cellular level, to merozoite invasion of erythrocytes. In the case of the Plasmodium blood-stage, efforts to identify host-pathogen protein-protein interactions have yielded important insights including vaccine candidates. In the case of sporozoite-hepatocyte invasion, the host-pathogen protein-protein interactions involved are poorly understood. METHODS: To gain a better understanding of the protein-protein interaction between the sporozoite ligands and host receptors, a systematic screen was performed. The previous Plasmodium falciparum and human surface protein ectodomain libraries were substantially extended, resulting in the creation of new libraries comprising 88 P. falciparum sporozoite protein coding sequences and 182 sequences encoding human hepatocyte surface proteins. Having expressed recombinant proteins from these sequences, a plate-based assay was used, capable of detecting low affinity interactions between recombinant proteins, modified for enhanced throughput, to screen the proteins for interactions. The novel interactions identified in the screen were characterized biochemically, and their essential role in parasite invasion was further elucidated using antibodies and genetically manipulated Plasmodium parasites. RESULTS: A total of 7540 sporozoite-hepatocyte protein pairs were tested under conditions capable of detecting interactions of at least 1.2 µM KD. An interaction between the human fibroblast growth factor receptor 4 (FGFR4) and the P. falciparum protein Pf34 is identified and reported here, characterizing its affinity and demonstrating the blockade of the interaction by reagents, including a monoclonal antibody. Furthermore, further interactions between Pf34 and a second P. falciparum rhoptry neck protein, PfRON6, and between human low-density lipoprotein receptor (LDLR) and the P. falciparum protein PIESP15 are identified. Conditional genetic deletion confirmed the essentiality of PfRON6 in the blood-stage, consistent with the important role of this protein in parasite lifecycle. Pf34 was refractory to attempted genetic modification. Antibodies to Pf34 abrogated the interaction and had a modest effect upon sporozoite invasion into primary human hepatocytes. CONCLUSION: Pf34 and PfRON6 may be members of a functionally important invasion complex which could be a target for future interventions. The modified interaction screening assay, protein expression libraries and P. falciparum mutant parasites reported here may be a useful tool for protein interaction discovery and antigen candidate screening which could be of wider value to the scientific community.
Assuntos
Hepatócitos , Plasmodium falciparum , Proteínas de Protozoários , Esporozoítos , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Hepatócitos/parasitologia , Humanos , Esporozoítos/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Interações Hospedeiro-Patógeno , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Interações Hospedeiro-Parasita , Ligação ProteicaRESUMO
Sporozoites are a motile form of malaria-causing Plasmodium falciparum parasites that migrate from the site of transmission in the dermis through the bloodstream to invade hepatocytes. Sporozoites interact with many cells within the host, but the molecular identity of these interactions and their role in the pathology of malaria is poorly understood. Parasite proteins that are secreted and embedded within membranes are known to be important for these interactions, but our understanding of how they interact with each other to form functional complexes is largely unknown. Here, we compile a library of recombinant proteins representing the repertoire of cell surface and secreted proteins from the P. falciparum sporozoite and use an assay designed to detect extracellular interactions to systematically identify complexes. We identify three protein complexes including an interaction between two components of the p24 complex that is involved in the trafficking of glycosylphosphatidylinositol-anchored proteins through the secretory pathway. Plasmodium parasites lacking either gene are strongly inhibited in the establishment of liver-stage infections. These findings reveal an important role for the p24 complex in malaria pathogenesis and show that the library of recombinant proteins represents a valuable resource to investigate P. falciparum sporozoite biology.
Assuntos
Interações Hospedeiro-Parasita , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Esporozoítos/metabolismo , Animais , Feminino , Malária/parasitologia , Camundongos Endogâmicos BALB C , Organismos Geneticamente Modificados , Fenótipo , Plasmodium berghei/genética , Plasmodium berghei/metabolismo , Plasmodium falciparum/fisiologia , Mapas de Interação de Proteínas , Proteínas de Protozoários/genética , Proteínas Recombinantes/metabolismo , Esporozoítos/fisiologiaRESUMO
Plasmodium species, the causative agent of malaria, have a complex life cycle involving two hosts. The sporozoite life stage is characterized by an extended phase in the mosquito salivary glands followed by free movement and rapid invasion of hepatocytes in the human host. This transmission stage has been the subject of many transcriptomics and proteomics studies and is also targeted by the most advanced malaria vaccine. We applied Bayesian data integration to determine which proteins are not only present in sporozoites but are also specific to that stage. Transcriptomic and proteomic Plasmodium data sets from 26 studies were weighted for how representative they are for sporozoites, based on a carefully assembled gold standard for Plasmodium falciparum (Pf) proteins known to be present or absent during the sporozoite life stage. Of 5418 Pf genes for which expression data were available at the RNA level or at the protein level, 975 were identified as enriched in sporozoites and 90 specific to them. We show that Pf sporozoites are enriched for proteins involved in type II fatty acid synthesis in the apicoplast and GPI anchor synthesis, but otherwise appear metabolically relatively inactive in the salivary glands of mosquitos. Newly annotated hypothetical sporozoite-specific and sporozoite-enriched proteins highlight sporozoite-specific functions. They include PF3D7_0104100 that we identified to be homologous to the prominin family, which in human has been related to a quiescent state of cancer cells. We document high levels of genetic variability for sporozoite proteins, specifically for sporozoite-specific proteins that elicit antibodies in the human host. Nevertheless, we can identify nine relatively well-conserved sporozoite proteins that elicit antibodies and that together can serve as markers for previous exposure. Our understanding of sporozoite biology benefits from identifying key pathways that are enriched during this life stage. This work can guide studies of molecular mechanisms underlying sporozoite biology and potential well-conserved targets for marker and drug development.
Assuntos
Plasmodium falciparum/metabolismo , Proteoma , Proteínas de Protozoários/metabolismo , Esporozoítos/metabolismo , Animais , Teorema de Bayes , Plasmodium falciparum/genética , Polimorfismo de Nucleotídeo Único , Probabilidade , TranscriptomaRESUMO
The malaria sporozoite injected by a mosquito migrates to the liver by traversing host cells. The sporozoite also traverses hepatocytes before invading a terminal hepatocyte and developing into exoerythrocytic forms. Hepatocyte infection is critical for parasite development into merozoites that infect erythrocytes, and the sporozoite is thus an important target for antimalarial intervention. Here, we investigated two abundant sporozoite proteins of the most virulent malaria parasite Plasmodium falciparum and show that they play important roles during cell traversal and invasion of human hepatocytes. Incubation of P. falciparum sporozoites with R1 peptide, an inhibitor of apical merozoite antigen 1 (AMA1) that blocks merozoite invasion of erythrocytes, strongly reduced cell traversal activity. Consistent with its inhibitory effect on merozoites, R1 peptide also reduced sporozoite entry into human hepatocytes. The strong but incomplete inhibition prompted us to study the AMA-like protein, merozoite apical erythrocyte-binding ligand (MAEBL). MAEBL-deficient P. falciparum sporozoites were severely attenuated for cell traversal activity and hepatocyte entry in vitro and for liver infection in humanized chimeric liver mice. This study shows that AMA1 and MAEBL are important for P. falciparum sporozoites to perform typical functions necessary for infection of human hepatocytes. These two proteins therefore have important roles during infection at distinct points in the life cycle, including the blood, mosquito, and liver stages.
Assuntos
Hepatócitos/parasitologia , Malária Falciparum/parasitologia , Proteínas de Membrana/antagonistas & inibidores , Merozoítos/crescimento & desenvolvimento , Plasmodium falciparum/patogenicidade , Proteínas de Protozoários/antagonistas & inibidores , Receptores de Superfície Celular/antagonistas & inibidores , Esporozoítos/crescimento & desenvolvimento , Animais , Anopheles/parasitologia , Antígenos de Protozoários/genética , Linhagem Celular , Modelos Animais de Doenças , Eritrócitos/parasitologia , Humanos , Fígado/parasitologia , Proteínas de Membrana/genética , Camundongos , Camundongos SCID , Proteínas de Protozoários/genética , Receptores de Superfície Celular/genéticaRESUMO
BACKGROUND: PfSPZ Vaccine, a promising pre-erythrocytic stage malaria vaccine candidate based on whole, radiation-attenuated Plasmodium falciparum (Pf) sporozoites (SPZ), has proven safe and effective in mediating sterile protection from malaria in malaria-naïve and exposed healthy adults. Vaccine-induced protection presumably depends on cellular responses to early parasite liver stages, but humoral immunity contributes. METHODS: On custom-made Pf protein microarrays, we profiled IgG and IgM responses to PfSPZ Vaccine and subsequent homologous controlled human malaria infection (CHMI) in 21 Tanzanian adults with (n = 12) or without (n = 9) HIV infection. Expression of the main identified immunogens in the pre-erythrocytic parasite stage was verified by immunofluorescence detection using freshly purified PfSPZ and an in vitro model of primary human hepatocytes. FINDINGS: Independent of HIV infection status, immunisation induced focused IgG and IgM responses to circumsporozoite surface protein (PfCSP) and merozoite surface protein 5 (PfMSP5). We show that PfMSP5 is detectable on the surface and in the apical complex of PfSPZ. INTERPRETATION: Our data demonstrate that HIV infection does not affect the quantity of the total IgG and IgM antibody responses to PfCSP and PfMSP5 after immunization with PfSPZ Vaccine. PfMSP5 represents a highly immunogenic, so far underexplored, target for vaccine-induced antibodies in malaria pre-exposed volunteers. FUNDING: This work was supported by the Equatorial Guinea Malaria Vaccine Initiative (EGMVI), the Clinical Trial Platform of the German Center for Infection Research (TTU 03.702), the Swiss Government Excellence Scholarships for Foreign Scholars and Artists (grant 2016.0056) and the Interdisciplinary Center for Clinical Research doctoral program of the Tübingen University Hospital. The funders had no role in design, analysis, or reporting of this study.
Assuntos
Anticorpos Antiprotozoários , Imunidade Humoral , Imunoglobulina G , Vacinas Antimaláricas , Malária Falciparum , Plasmodium falciparum , Humanos , Vacinas Antimaláricas/imunologia , Vacinas Antimaláricas/administração & dosagem , Plasmodium falciparum/imunologia , Tanzânia/epidemiologia , Adulto , Malária Falciparum/imunologia , Malária Falciparum/prevenção & controle , Malária Falciparum/parasitologia , Masculino , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Anticorpos Antiprotozoários/imunologia , Feminino , Imunoglobulina M/imunologia , Infecções por HIV/imunologia , Esporozoítos/imunologia , Proteínas de Protozoários/imunologia , Antígenos de Protozoários/imunologia , Pessoa de Meia-IdadeRESUMO
Plasmodium falciparum (Pf) parasite development in liver represents the initial step of the life-cycle in the human host after a Pf-infected mosquito bite. While an attractive stage for life-cycle interruption, understanding of parasite-hepatocyte interaction is inadequate due to limitations of existing in vitro models. We explore the suitability of hepatocyte organoids (HepOrgs) for Pf-development and show that these cells permitted parasite invasion, differentiation and maturation of different Pf strains. Single-cell messenger RNA sequencing (scRNAseq) of Pf-infected HepOrg cells has identified 80 Pf-transcripts upregulated on day 5 post-infection. Transcriptional profile changes are found involving distinct metabolic pathways in hepatocytes with Scavenger Receptor B1 (SR-B1) transcripts highly upregulated. A novel functional involvement in schizont maturation is confirmed in fresh primary hepatocytes. Thus, HepOrgs provide a strong foundation for a versatile in vitro model for Pf liver-stages accommodating basic biological studies and accelerated clinical development of novel tools for malaria control.
Assuntos
Malária Falciparum , Malária , Humanos , Plasmodium falciparum/genética , Fígado/metabolismo , Hepatócitos/metabolismo , Malária/parasitologia , Organoides/metabolismo , Malária Falciparum/parasitologiaRESUMO
During co-evolution Plasmodium parasites and vertebrates went through a process of selection resulting in defined and preferred parasite-host combinations. As such, Plasmodium falciparum (Pf) sporozoites can infect human hepatocytes while seemingly incompatible with host cellular machinery of other species. The compatibility between parasite invasion ligands and their respective human hepatocyte receptors plays a key role in Pf host selectivity. However, it is unclear whether the ability of Pf sporozoites to mature in cross-species infection also plays a role in host tropism. Here we used fresh hepatocytes isolated from porcine livers to study permissiveness to Pf sporozoite invasion and development. We monitored intra-hepatic development via immunofluorescence using anti-HSP70, MSP1, EXP1, and EXP2 antibodies. Our data shows that Pf sporozoites can invade non-human hepatocytes and undergo partial maturation with a significant decrease in schizont numbers between day three and day five. A possible explanation is that Pf sporozoites fail to form a parasitophorous vacuolar membrane (PVM) during invasion. Indeed, the observed aberrant EXP1 and EXP2 staining supports the presence of an atypical PVM. Functions of the PVM include the transport of nutrients, export of waste, and offering a protective barrier against intracellular host effectors. Therefore, an atypical PVM likely results in deficiencies that may detrimentally impact parasite development at multiple levels. In summary, despite successful invasion of porcine hepatocytes, Pf development arrests at mid-stage, possibly due to an inability to mobilize critical nutrients across the PVM. These findings underscore the potential of a porcine liver model for understanding the importance of host factors required for Pf mid-liver stage development.
Assuntos
Plasmodium falciparum , Plasmodium , Animais , Hepatócitos/parasitologia , Fígado/parasitologia , Proteínas de Protozoários , Esquizontes , Esporozoítos , SuínosRESUMO
Plasmodium sporozoites infect the liver and develop into exoerythrocytic merozoites that initiate blood-stage disease. The hepatocyte molecular pathways that permit or abrogate parasite replication and merozoite formation have not been thoroughly explored, and a deeper understanding may identify therapeutic strategies to mitigate malaria. Cellular inhibitor of apoptosis (cIAP) proteins regulate cell survival and are co-opted by intracellular pathogens to support development. Here, we show that cIAP1 levels are upregulated during Plasmodium liver infection and that genetic or pharmacological targeting of cIAPs using clinical-stage antagonists preferentially kills infected hepatocytes and promotes immunity. Using gene-targeted mice, the mechanism was defined as TNF-TNFR1-mediated apoptosis via caspases 3 and 8 to clear parasites. This study reveals the importance of cIAPs to Plasmodium infection and demonstrates that host-directed antimalarial drugs can eliminate liver parasites and induce immunity while likely providing a high barrier to resistance in the parasite.
Assuntos
Apoptose , Hepatócitos/patologia , Fígado/patologia , Fígado/parasitologia , Malária/patologia , Malária/parasitologia , Administração Oral , Animais , Apoptose/efeitos dos fármacos , Disponibilidade Biológica , Caspase 3/metabolismo , Culicidae/parasitologia , Dipeptídeos/administração & dosagem , Dipeptídeos/farmacologia , Hepatócitos/efeitos dos fármacos , Imunidade/efeitos dos fármacos , Indóis/administração & dosagem , Indóis/farmacologia , Proteínas Inibidoras de Apoptose/antagonistas & inibidores , Proteínas Inibidoras de Apoptose/metabolismo , Estágios do Ciclo de Vida/efeitos dos fármacos , Malária/imunologia , Plasmodium/efeitos dos fármacos , Plasmodium/crescimento & desenvolvimento , Plasmodium/metabolismo , Proteínas de Protozoários/metabolismo , Esporozoítos/efeitos dos fármacos , Esporozoítos/fisiologia , Tiazóis/farmacologia , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Transgenic reporter lines of malaria parasites that express fluorescent or luminescent proteins are valuable tools for drug and vaccine screening assays as well as to interrogate parasite gene function. Different Plasmodium falciparum (Pf ) reporter lines exist, however nearly all have been created in the African NF54/3D7 laboratory strain. Here we describe the generation of novel reporter lines, using CRISPR/Cas9 gene modification, both in the standard Pf NF54 background and in a recently described Cambodian P. falciparum NF135.C10 line. Sporozoites of this line show more effective hepatocyte invasion and enhanced liver merozoite development compared to Pf NF54. We first generated Pf NF54 reporter parasites to analyze two novel promoters for constitutive and high expression of mCherry-luciferase and GFP in blood and mosquito stages. The promoter sequences were selected based on available transcriptome data and are derived from two housekeeping genes, i.e., translation initiation factor SUI1, putative (sui1, PF3D7_1243600) and 40S ribosomal protein S30 (40s, PF3D7_0219200). We then generated and characterized reporter lines in the Pf NF135.C10 line which express GFP driven by the sui1 and 40s promoters as well as by the previously used ef1α promoter (GFP@ef1α, GFP@sui1, GFP@40s). The GFP@40s reporter line showed strongest GFP expression in liver stages as compared to the other two lines. The strength of reporter expression by the 40s promoter throughout the complete life cycle, including liver stages, makes transgenic lines expressing reporters by the 40s promoter valuable novel tools for analyses of P. falciparum.
Assuntos
Genes Reporter , Plasmodium falciparum , Regiões Promotoras Genéticas , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Culicidae , Luciferases/genética , Proteínas Luminescentes/genética , Malária Falciparum , Plasmodium falciparum/genética , EsporozoítosRESUMO
For some diseases, successful vaccines have been developed using a nonpathogenic counterpart of the causative microorganism of choice. The nonpathogenicity of the rodent Plasmodium berghei (Pb) parasite in humans prompted us to evaluate its potential as a platform for vaccination against human infection by Plasmodium falciparum (Pf), a causative agent of malaria. We hypothesized that the genetic insertion of a leading protein target for clinical development of a malaria vaccine, Pf circumsporozoite protein (CSP), in its natural pre-erythrocytic environment, would enhance Pb's capacity to induce protective immunity against Pf infection. Hence, we recently generated a transgenic Pb sporozoite immunization platform expressing PfCSP (PbVac), and we now report the clinical evaluation of its biological activity against controlled human malaria infection (CHMI). This first-in-human trial shows that PbVac is safe and well tolerated, when administered by a total of ~300 PbVac-infected mosquitoes per volunteer. Although protective efficacy evaluated by CHMI showed no sterile protection at the tested dose, significant delays in patency (2.2 days, P = 0.03) and decreased parasite density were observed after immunization, corresponding to an estimated 95% reduction in Pf liver parasite burden (confidence interval, 56 to 99%; P = 0.010). PbVac elicits dose-dependent cross-species cellular immune responses and functional PfCSP-dependent antibody responses that efficiently block Pf sporozoite invasion of liver cells in vitro. This study demonstrates that PbVac immunization elicits a marked biological effect, inhibiting a subsequent infection by the human Pf parasite, and establishes the clinical validation of a new paradigm in malaria vaccination.
Assuntos
Vacinas Antimaláricas , Malária Falciparum , Malária , Parasitos , Animais , Anticorpos Antiprotozoários , Imunização , Malária Falciparum/prevenção & controle , Plasmodium falciparum , Proteínas de Protozoários/genética , Roedores , VacinaçãoRESUMO
BACKGROUND: Malaria is the most important vector-borne disease in the world. Epidemiological and ecological studies of malaria traditionally utilize detection of Plasmodium sporozoites in whole mosquitoes or salivary glands by microscopy or serological or molecular assays. However, these methods are labor-intensive, and can over- or underestimate mosquito transmission potential. To overcome these limitations, alternative sample types have been evaluated for the study of malaria. It was recently shown that Plasmodium could be detected in saliva expectorated on honey-soaked cards by Anopheles stephensi, providing a better estimate of transmission risk. We evaluated whether excretion of Plasmodium falciparum nucleic acid by An. stephensi correlates with expectoration of parasites in saliva, thus providing an additional sample type for estimating transmission potential. Mosquitoes were exposed to infectious blood meals containing cultured gametocytes, and excreta collected at different time points post-exposure. Saliva was collected on honey-soaked filter paper cards, and salivary glands were dissected and examined microscopically for sporozoites. Excreta and saliva samples were tested by real time polymerase chain reaction (RT-rtPCR). RESULTS: Plasmodium falciparum RNA was detected in mosquito excreta as early as four days after ingesting a bloodmeal containing gametocytes. Once sporogony (the development of sporozoites) occurred, P. falciparum RNA was detected concurrently in both excreta and saliva samples. In the majority of cases, no difference was observed between the Ct values obtained from matched excreta and saliva samples, suggesting that both samples provide equally sensitive results. A positive association was observed between the molecular detection of the parasites in both samples and the proportion of mosquitoes with sporozoites in their salivary glands from each container. No distinguishable parasites were observed when excreta samples were stained and microscopically analyzed. CONCLUSIONS: Mosquito saliva and excreta are easily collected and are promising for surveillance of malaria-causing parasites, especially in low transmission settings or in places where arboviruses co-circulate.
Assuntos
Anopheles/parasitologia , Fezes/parasitologia , Malária/transmissão , Mosquitos Vetores/parasitologia , Plasmodium/isolamento & purificação , Saliva/parasitologia , Animais , DNA de Protozoário/genética , Feminino , Malária Falciparum/transmissão , Masculino , Plasmodium/genética , Plasmodium falciparum/genética , Plasmodium falciparum/isolamento & purificação , Plasmodium vivax/genética , Plasmodium vivax/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real , Esporozoítos/genética , Esporozoítos/isolamento & purificaçãoRESUMO
Plasmodium falciparum has a complex life cycle that involves interaction with multiple tissues inside the human and mosquito hosts. Identification of essential genes at all different stages of the P. falciparum life cycle is urgently required for clinical development of tools for malaria control and eradication. However, the study of P. falciparum is limited by the inability to genetically modify the parasite throughout its life cycle with the currently available genetic tools. Here, we describe the detailed characterization of a new marker-free P. falciparum parasite line that expresses rapamycin-inducible Cre recombinase across the full life cycle. Using this parasite line, we were able to conditionally delete the essential invasion ligand AMA1 in three different developmental stages for the first time. We further confirm efficient gene deletion by targeting the nonessential kinase FIKK7.1.IMPORTANCE One of the major limitations in studying P. falciparum is that so far only asexual stages are amenable to rapid conditional genetic modification. The most promising drug targets and vaccine candidates, however, have been refractory to genetic modification because they are essential during the blood stage or for transmission in the mosquito vector. This leaves a major gap in our understanding of parasite proteins in most life cycle stages and hinders genetic validation of drug and vaccine targets. Here, we describe a method that supports conditional gene deletion across the P. falciparum life cycle for the first time. We demonstrate its potential by deleting essential and nonessential genes at different parasite stages, which opens up completely new avenues for the study of malaria and drug development. It may also allow the realization of novel vaccination strategies using attenuated parasites.
Assuntos
Deleção de Genes , Genes de Protozoários , Estágios do Ciclo de Vida/genética , Biologia Molecular/métodos , Plasmodium falciparum/genética , Técnicas de Inativação de Genes , Integrases/genética , Mosquitos Vetores , Fenótipo , Plasmodium falciparum/enzimologia , SirolimoRESUMO
Recent evidence suggests that certain vaccines, including Bacillus-Calmette Guérin (BCG), can induce changes in the innate immune system with non-specific memory characteristics, termed 'trained immunity'. Here we present the results of a randomised, controlled phase 1 clinical trial in 20 healthy male and female volunteers to evaluate the induction of immunity and protective efficacy of the anti-tuberculosis BCG vaccine against a controlled human malaria infection. After malaria challenge infection, BCG vaccinated volunteers present with earlier and more severe clinical adverse events, and have significantly earlier expression of NK cell activation markers and a trend towards earlier phenotypic monocyte activation. Furthermore, parasitemia in BCG vaccinated volunteers is inversely correlated with increased phenotypic NK cell and monocyte activation. The combined data demonstrate that BCG vaccination alters the clinical and immunological response to malaria, and form an impetus to further explore its potential in strategies for clinical malaria vaccine development.
Assuntos
Vacina BCG/imunologia , Imunidade Inata/imunologia , Memória Imunológica/imunologia , Células Matadoras Naturais/imunologia , Malária Falciparum/imunologia , Malária Falciparum/prevenção & controle , Adolescente , Adulto , Animais , Anopheles/parasitologia , Antígeno B7-2/metabolismo , Vacina BCG/administração & dosagem , Proteína C-Reativa/metabolismo , Citocinas/sangue , Feminino , Proteínas Ligadas por GPI/metabolismo , Granzimas/sangue , Antígenos HLA-DR/metabolismo , Humanos , Interferon gama/sangue , Ativação Linfocitária/imunologia , Masculino , Parasitemia/prevenção & controle , Plasmodium falciparum/imunologia , Receptores de IgG/metabolismo , Vacinação , Adulto JovemRESUMO
There is a pressing need for safe and highly effective Plasmodium falciparum (Pf) malaria vaccines. The circumsporozoite protein (CS), expressed on sporozoites and during early hepatic stages, is a leading target vaccine candidate, but clinical efficacy has been modest so far. Conversely, whole-sporozoite (WSp) vaccines have consistently shown high levels of sterilizing immunity and constitute a promising approach to effective immunization against malaria. Here, we describe a novel WSp malaria vaccine that employs transgenic sporozoites of rodent P. berghei (Pb) parasites as cross-species immunizing agents and as platforms for expression and delivery of PfCS (PbVac). We show that both wild-type Pb and PbVac sporozoites unabatedly infect and develop in human hepatocytes while unable to establish an infection in human red blood cells. In a rabbit model, similarly susceptible to Pb hepatic but not blood infection, we show that PbVac elicits cross-species cellular immune responses, as well as PfCS-specific antibodies that efficiently inhibit Pf sporozoite liver invasion in human hepatocytes and in mice with humanized livers. Thus, PbVac is safe and induces functional immune responses in preclinical studies, warranting clinical testing and development.
RESUMO
Malaria is a pernicious infectious disease caused by apicomplexan parasites of the genus Plasmodium. Each year, malaria afflicts over 200million people, causing considerable morbidity, loss to gross domestic product of endemic countries, and more than 420,000 deaths. A central feature of the virulence of malaria parasites is the ability of sporozoite forms injected by a mosquito to navigate from the inoculation site in the skin through host tissues to infect the liver. The ability for sporozoites to traverse through different host cell types is very important for the successful development of parasites within the mammalian host. Over the past decade, our understanding of the role of host cell traversal has become clearer through important studies with rodent models of malaria. However, we still do not understand the stepwise process of host cell entry and exit or know the molecular mechanisms governing each step. We know even less about cell traversal by malaria parasite species that infect humans. Here, we review current knowledge regarding the role and molecular mechanisms of sporozoite cell traversal and highlight recent advances that prompt new ways of thinking about this important process.
Assuntos
Malária/parasitologia , Plasmodium/fisiologia , Esporozoítos/fisiologia , Animais , Derme/parasitologia , Eritrócitos/parasitologia , Hepatócitos/parasitologia , Interações Hospedeiro-Parasita , HumanosRESUMO
Malaria sporozoites are deposited into the skin by mosquitoes and infect hepatocytes. The molecular basis of how Plasmodium falciparum sporozoites migrate through host cells is poorly understood, and direct evidence of its importance in vivo is lacking. Here, we generated traversal-deficient sporozoites by genetic disruption of sporozoite microneme protein essential for cell traversal (PfSPECT) or perforin-like protein 1 (PfPLP1). Loss of either gene did not affect P. falciparum growth in erythrocytes, in contrast with a previous report that PfPLP1 is essential for merozoite egress. However, although traversal-deficient sporozoites could invade hepatocytes in vitro, they could not establish normal liver infection in humanized mice. This is in contrast with NF54 sporozoites, which infected the humanized mice and developed into exoerythrocytic forms. This study demonstrates that SPECT and perforin-like protein 1 (PLP1) are critical for transcellular migration by P. falciparum sporozoites and demonstrates the importance of cell traversal for liver infection by this human pathogen.
Assuntos
Movimento Celular , Fígado/patologia , Fígado/parasitologia , Malária Falciparum/patologia , Malária Falciparum/parasitologia , Plasmodium falciparum/fisiologia , Animais , Hepatócitos/parasitologia , Hepatócitos/patologia , Humanos , Camundongos SCID , Mutação/genética , Parasitos/metabolismo , Proteínas de Protozoários/metabolismo , Esporozoítos/metabolismoRESUMO
O-glycosylation of the Plasmodium sporozoite surface proteins CSP and TRAP was recently identified, but the role of this modification in the parasite life cycle and its relevance to vaccine design remain unclear. Here, we identify the Plasmodium protein O-fucosyltransferase (POFUT2) responsible for O-glycosylating CSP and TRAP. Genetic disruption of POFUT2 in Plasmodium falciparum results in ookinetes that are attenuated for colonizing the mosquito midgut, an essential step in malaria transmission. Some POFUT2-deficient parasites mature into salivary gland sporozoites although they are impaired for gliding motility, cell traversal, hepatocyte invasion, and production of exoerythrocytic forms in humanized chimeric liver mice. These defects can be attributed to destabilization and incorrect trafficking of proteins bearing thrombospondin repeats (TSRs). Therefore, POFUT2 plays a similar role in malaria parasites to that in metazoans: it ensures the trafficking of Plasmodium TSR proteins as part of a non-canonical glycosylation-dependent endoplasmic reticulum protein quality control mechanism.The role of O-glycosylation in the malaria life cycle is largely unknown. Here, the authors identify a Plasmodium protein O-fucosyltransferase and show that it is important for normal trafficking of a subset of surface proteins, particularly CSP and TRAP, and efficient infection of mosquito and vertebrate hosts.