Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Clin Immunol ; 245: 109141, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36270469

RESUMO

Myasthenia gravis (MG) is a T-cell-dependent, antibody-mediated autoimmune disease. Diabetes mellitus (DM) is a chronic metabolic disease characterized by hyperglycemia and emerging evidence indicates its profound impacts on the immune homeostasis. Previous studies and our data showed DM might serve as an independent risk factor of MG, yet the underlying immune and molecular mechanisms remain to be addressed. Our study observed that circulating Tfh (cTfh) cells were increased in MG patients with DM and expressed a high level of ICOS. Besides, positive correlations between activated cTfh cells and plasmablasts were documented. Further studies demonstrated hyperglycemia promoted the differentiation and activation of Tfh cells which, in turn, caused abnormal plasmablasts differentiation and antibody secretion through the mTOR signaling pathway. These results indicated DM might aggravate the aberrant humoral immunity in MG patients by augmenting Tfh cells differentiation and function and tight glycemic control might be beneficial for MG patients with DM.


Assuntos
Diabetes Mellitus , Hiperglicemia , Miastenia Gravis , Humanos , Imunidade Humoral , Linfócitos T Auxiliares-Indutores , Células T Auxiliares Foliculares , Diabetes Mellitus/metabolismo
2.
J Neuroinflammation ; 18(1): 145, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34183017

RESUMO

BACKGROUND: Experimental autoimmune encephalomyelitis (EAE) is an animal disease model of multiple sclerosis (MS) that involves the immune system and central nervous system (CNS). However, it is unclear how genetic predispositions promote neuroinflammation in MS and EAE. Here, we investigated how partial loss-of-function of suppressor of MEK1 (SMEK1), a regulatory subunit of protein phosphatase 4, facilitates the onset of MS and EAE. METHODS: C57BL/6 mice were immunized with myelin oligodendrocyte glycoprotein 35-55 (MOG35-55) to establish the EAE model. Clinical signs were recorded and pathogenesis was investigated after immunization. CNS tissues were analyzed by immunostaining, quantitative polymerase chain reaction (qPCR), western blot analysis, and enzyme-linked immunosorbent assay (ELISA). Single-cell analysis was carried out in the cortices and hippocampus. Splenic and lymph node cells were evaluated with flow cytometry, qPCR, and western blot analysis. RESULTS: Here, we showed that partial Smek1 deficiency caused more severe symptoms in the EAE model than in controls by activating myeloid cells and that Smek1 was required for maintaining immunosuppressive function by modulating the indoleamine 2,3-dioxygenase (IDO1)-aryl hydrocarbon receptor (AhR) pathway. Single-cell sequencing and an in vitro study showed that Smek1-deficient microglia and macrophages were preactivated at steady state. After MOG35-55 immunization, microglia and macrophages underwent hyperactivation and produced increased IL-1ß in Smek1-/+ mice at the peak stage. Moreover, dysfunction of the IDO1-AhR pathway resulted from the reduction of interferon γ (IFN-γ), enhanced antigen presentation ability, and inhibition of anti-inflammatory processes in Smek1-/+ EAE mice. CONCLUSIONS: The present study suggests a protective role of Smek1 in autoimmune demyelination pathogenesis via immune suppression and inflammation regulation in both the immune system and the central nervous system. Our findings provide an instructive basis for the roles of Smek1 in EAE and broaden the understanding of the genetic factors involved in the pathogenesis of autoimmune demyelination.


Assuntos
Sistema Nervoso Central/patologia , Encefalomielite Autoimune Experimental , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Interferon gama/metabolismo , Microglia/imunologia , Fosfoproteínas Fosfatases/imunologia , Receptores de Hidrocarboneto Arílico/metabolismo , Animais , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/fisiopatologia , Citocinas , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Técnicas de Inativação de Genes , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Esclerose Múltipla/imunologia , Glicoproteína Mielina-Oligodendrócito/imunologia , Células Mieloides/imunologia , Células Mieloides/metabolismo , Fragmentos de Peptídeos/imunologia , Fosfoproteínas Fosfatases/metabolismo , Transdução de Sinais , Baço/patologia
3.
J Neuroinflammation ; 18(1): 244, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34702288

RESUMO

BACKGROUND: Diabetes mellitus (DM) is a common concomitant disease of late-onset myasthenia gravis (MG). However, the impacts of DM on the progression of late-onset MG were unclear. METHODS: In this study, we examined the immune response in experimental autoimmune myasthenia gravis (EAMG) rats with DM or not. The phenotype and function of the spleen and lymph nodes were determined by flow cytometry. The serum antibodies, Tfh cells, and germinal center B cells were determined by ELISA and flow cytometry. The roles of advanced glycation end products (AGEs) in regulating Tfh cells were further explored in vitro by co-culture assays. RESULTS: Our results indicated clinical scores of EAMG rats were worse in diabetes rats compared to control, which was due to the increased production of anti-R97-116 antibody and antibody-secreting cells. Furthermore, diabetes induced a significant upregulation of Tfh cells and the subtypes of Tfh1 and Tfh17 cells to provide assistance for antibody production. The total percentages of B cells were increased with an activated statue of improved expression of costimulatory molecules CD80 and CD86. We found CD4+ T-cell differentiation was shifted from Treg cells towards Th1/Th17 in the DM+EAMG group compared to the EAMG group. In addition, in innate immunity, diabetic EAMG rats displayed more CXCR5 expression on NK cells. However, the expression of CXCR5 on NKT cells was down-regulated with the increased percentages of NKT cells in the DM+EAMG group. Ex vivo studies further indicated that Tfh cells were upregulated by AGEs instead of hyperglycemia. The upregulation was mediated by the existence of B cells, the mechanism of which might be attributed the elevated molecule CD40 on B cells. CONCLUSIONS: Diabetes promoted both adaptive and innate immunity and exacerbated clinical symptoms in EAMG rats. Considering the effect of diabetes, therapy in reducing blood glucose levels in MG patients might improve clinical efficacy through suppressing the both innate and adaptive immune responses. Additional studies are needed to confirm the effect of glucose or AGEs reduction to seek treatment for MG.


Assuntos
Imunidade Adaptativa/fisiologia , Diabetes Mellitus Experimental/imunologia , Imunidade Inata/fisiologia , Mediadores da Inflamação/imunologia , Miastenia Gravis Autoimune Experimental/imunologia , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Técnicas de Cocultura , Diabetes Mellitus Experimental/metabolismo , Feminino , Mediadores da Inflamação/metabolismo , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Miastenia Gravis Autoimune Experimental/metabolismo , Ratos , Ratos Endogâmicos Lew , Células Th17/imunologia , Células Th17/metabolismo
4.
BMC Genomics ; 21(1): 269, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32228450

RESUMO

BACKGROUND: The nucleoli, including their proteomes, of higher eukaryotes have been extensively studied, while few studies about the nucleoli of the lower eukaryotes - protists were reported. Giardia lamblia, a protist with the controversy of whether it is an extreme primitive eukaryote or just a highly evolved parasite, might be an interesting object for carrying out the nucleolar proteome study of protists and for further examining the controversy. RESULTS: Using bioinformatics methods, we reconstructed G. lamblia nucleolar proteome (GiNuP) and the common nucleolar proteome of the three representative higher eukaryotes (human, Arabidopsis, yeast) (HEBNuP). Comparisons of the two proteomes revealed that: 1) GiNuP is much smaller than HEBNuP, but 78.4% of its proteins have orthologs in the latter; 2) More than 68% of the GiNuP proteins are involved in the "Ribosome related" function, and the others participate in the other functions, and these two groups of proteins are much larger and much smaller than those in HEBNuP, respectively; 3) Both GiNuP and HEBNuP have their own specific proteins, but HEBNuP has a much higher proportion of such proteins to participate in more categories of nucleolar functions. CONCLUSION: For the first time the nucleolar proteome of a protist - Giardia was reconstructed. The results of comparison of it with the common proteome of three representative higher eukaryotes -- HEBNuP indicated that the simplicity of GiNuP is most probably a reflection of primitiveness but not just parasitic reduction of Giardia, and simultaneously revealed some interesting evolutionary phenomena about the nucleolus and even the eukaryotic cell, compositionally and functionally.


Assuntos
Giardia lamblia/metabolismo , Proteoma/metabolismo , Animais , Evolução Biológica , Evolução Molecular , Giardia lamblia/genética , Humanos , Proteoma/genética
5.
J Neuroinflammation ; 16(1): 282, 2019 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-31884963

RESUMO

BACKGROUND: Recent studies have demonstrated that natural killer (NK) cells can modulate other immune components and are involved in the development or progression of several autoimmune diseases. However, the roles and mechanisms of NK cells in regulating experimental autoimmune myasthenia gravis (EAMG) remained to be illustrated. METHODS: To address the function of NK cells in experimental autoimmune myasthenia gravis in vivo, EAMG rats were adoptively transferred with splenic NK cells. The serum antibodies, and splenic follicular helper T (Tfh) cells and germinal center B cells were determined by ELISA and flow cytometry. The roles of NK cells in regulating Tfh cells were further verified in vitro by co-culturing splenocytes or isolated T cells with NK cells. Moreover, the phenotype, localization, and function differences between different NK cell subtypes were determined by flow cytometry, immunofluorescence, and ex vivo co-culturation. RESULTS: In this study, we found that adoptive transfer of NK cells ameliorated EAMG symptoms by suppressing Tfh cells and germinal center B cells. Ex vivo studies indicated NK cells inhibited CD4+ T cells and Tfh cells by inducing the apoptosis of T cells. More importantly, NK cells could be divided into CXCR5- and CXCR5+ NK subtypes according to the expression of CXCR5 molecular. Compared with CXCR5- NK cells, which were mainly localized outside B cell zone, CXCR5+ NK were concentrated in the B cell zone and exhibited higher expression levels of IL-17 and ICOS, and lower expression level of CD27. Ex vivo studies indicated it was CXCR5- NK cells not CXCR5+ NK cells that suppressed CD4+ T cells and Tfh cells. Further analysis revealed that, compared with CXCR5- NK cells, CXCR5+ NK cells enhanced the ICOS expression of Tfh cells. CONCLUSIONS: These findings highlight the different roles of CXCR5- NK cells and CXCR5+ NK cells. It was CXCR5- NK cells but not CXCR5+ NK cells that suppressed Tfh cells and inhibited the autoimmune response in EAMG models.


Assuntos
Células Matadoras Naturais/imunologia , Células Matadoras Naturais/transplante , Miastenia Gravis Autoimune Experimental/imunologia , Receptores CXCR5/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Transferência Adotiva , Animais , Feminino , Camundongos , Ratos , Ratos Endogâmicos Lew
6.
J Neuroinflammation ; 16(1): 202, 2019 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-31679515

RESUMO

BACKGROUND: The thymus plays an essential role in the pathogenesis of myasthenia gravis (MG). In patients with MG, natural regulatory T cells (nTreg), a subpopulation of T cells that maintain tolerance to self-antigens, are severely impaired in the thymuses. In our previous study, upregulated nTreg cells were observed in the thymuses of rats in experimental autoimmune myasthenia gravis after treatment with exosomes derived from statin-modified dendritic cells (statin-Dex). METHODS: We evaluated the effects of exosomes on surface co-stimulation markers and Aire expression of different kinds of thymic stromal cells, including cTEC, mTEC, and tDCs, in EAMG rats. The isolated exosomes were examined by western blot and DLS. Immunofluorescence was used to track the exosomes in the thymus. Flow cytometry and western blot were used to analyze the expression of co-stimulatory molecules and Aire in vivo and in vitro. RESULTS: We confirmed the effects of statin-Dex in inducing Foxp3+ nTreg cells and found that both statin-Dex and DMSO-Dex could upregulate CD40 but only statin-Dex increased Aire expression in thymic stromal cells in vivo. Furthermore, we found that the role of statin-Dex and DMSO-Dex in the induction of Foxp3+ nTreg cells was dependent on epithelial cells in vitro. CONCLUSIONS: We demonstrated that statin-Dex increased expression of Aire in the thymus, which may further promote the Foxp3 expression in the thymus. These findings may provide a new strategy for the treatment of myasthenia gravis.


Assuntos
Exossomos/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Miastenia Gravis Autoimune Experimental/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Animais , Atorvastatina/farmacologia , Células da Medula Óssea/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/imunologia , Células Dendríticas/metabolismo , Feminino , Ratos , Ratos Endogâmicos Lew , Linfócitos T Reguladores/citologia , Timo , Fatores de Transcrição/metabolismo , Proteína AIRE
7.
J Neuroinflammation ; 15(1): 51, 2018 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-29467007

RESUMO

BACKGROUND: With the recognition of the key roles of cellular metabolism in immunity, targeting metabolic pathway becomes a new strategy for autoimmune disease treatment. Guillain-Barré syndrome (GBS) is an acute immune-mediated inflammatory demyelinating disease of the peripheral nervous system, characterized by inflammatory cell infiltration. These inflammatory cells, including activated macrophages, Th1 cells, and Th17 cells, generally undergo metabolic reprogramming and rely mainly on glycolysis to exert functions. This study aimed to explore whether enhanced glycolysis contributed to the pathogenesis of experimental autoimmune neuritis (EAN), a classic model of GBS. METHODS: Preventive and therapeutic treatments with glycolysis inhibitor, 2-deoxy-D-glucose (2-DG), were applied to EAN rats. The effects of treatments were determined by clinical scoring, weighting, and tissue examination. Flow cytometry and ELISA were used to evaluate T cell differentiation, autoantibody level, and macrophage functions in vivo and in vitro. RESULTS: Glycolysis inhibition with 2-DG not only inhibited the initiation, but also prevented the progression of EAN, evidenced by the improved clinical scores, weight loss, inflammatory cell infiltration, and demyelination of sciatic nerves. 2-DG inhibited the differentiation of Th1, Th17, and Tfh cells but enhanced Treg cell development, accompanied with reduced autoantibody secretion. Further experiments in vitro proved glycolysis inhibition decreased the nitric oxide production and phagocytosis of macrophages and suppressed the maturation of dendritic cells (DC). CONCLUSION: The effects of glycolysis inhibition on both innate and adaptive immune responses and the alleviation of animal clinical symptoms indicated that enhanced glycolysis contributed to the pathogenesis of EAN. Glycolysis inhibition may be a new therapy for GBS.


Assuntos
Glicólise/fisiologia , Neurite Autoimune Experimental/induzido quimicamente , Neurite Autoimune Experimental/metabolismo , Animais , Desoxiglucose/farmacologia , Desoxiglucose/uso terapêutico , Glicólise/efeitos dos fármacos , Imunidade Celular/efeitos dos fármacos , Imunidade Celular/fisiologia , Lipopolissacarídeos/toxicidade , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo , Camundongos , Neurite Autoimune Experimental/tratamento farmacológico , Células RAW 264.7 , Ratos , Ratos Endogâmicos Lew
9.
Plant Physiol ; 170(4): 2392-406, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26869704

RESUMO

Examining the proteins that plants secrete into the apoplast in response to pathogen attack provides crucial information for understanding the molecular mechanisms underlying plant innate immunity. In this study, we analyzed the changes in the root apoplast secretome of the Verticillium wilt-resistant island cotton cv Hai 7124 (Gossypium barbadense) upon infection with Verticillium dahliae Two-dimensional differential gel electrophoresis and matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry analysis identified 68 significantly altered spots, corresponding to 49 different proteins. Gene ontology annotation indicated that most of these proteins function in reactive oxygen species (ROS) metabolism and defense response. Of the ROS-related proteins identified, we further characterized a thioredoxin, GbNRX1, which increased in abundance in response to V. dahliae challenge, finding that GbNRX1 functions in apoplastic ROS scavenging after the ROS burst that occurs upon recognition of V. dahliae Silencing of GbNRX1 resulted in defective dissipation of apoplastic ROS, which led to higher ROS accumulation in protoplasts. As a result, the GbNRX1-silenced plants showed reduced wilt resistance, indicating that the initial defense response in the root apoplast requires the antioxidant activity of GbNRX1. Together, our results demonstrate that apoplastic ROS generation and scavenging occur in tandem in response to pathogen attack; also, the rapid balancing of redox to maintain homeostasis after the ROS burst, which involves GbNRX1, is critical for the apoplastic immune response.


Assuntos
Gossypium/metabolismo , Gossypium/microbiologia , Homeostase , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Tiorredoxinas/metabolismo , Verticillium/fisiologia , Resistência à Doença , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Especificidade de Órgãos/genética , Filogenia , Raízes de Plantas/metabolismo , Feixe Vascular de Plantas/metabolismo , Proteômica
11.
J Exp Bot ; 67(6): 1935-50, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26873979

RESUMO

Accumulating evidence indicates that plant MYB transcription factors participate in defense against pathogen attack, but their regulatory targets and related signaling processes remain largely unknown. Here, we identified a defense-related MYB gene (GhMYB108) from upland cotton (Gossypium hirsutum) and characterized its functional mechanism. Expression of GhMYB108 in cotton plants was induced by Verticillium dahliae infection and responded to the application of defense signaling molecules, including salicylic acid, jasmonic acid, and ethylene. Knockdown of GhMYB108 expression led to increased susceptibility of cotton plants to V. dahliae, while ecotopic overexpression of GhMYB108 in Arabidopsis thaliana conferred enhanced tolerance to the pathogen. Further analysis demonstrated that GhMYB108 interacted with the calmodulin-like protein GhCML11, and the two proteins form a positive feedback loop to enhance the transcription of GhCML11 in a calcium-dependent manner. Verticillium dahliae infection stimulated Ca(2+) influx into the cytosol in cotton root cells, but this response was disrupted in both GhCML11-silenced plants and GhMYB108-silenced plants in which expression of several calcium signaling-related genes was down-regulated. Taken together, these results indicate that GhMYB108 acts as a positive regulator in defense against V. dahliae infection by interacting with GhCML11. Furthermore, the data also revealed the important roles and synergetic regulation of MYB transcription factor, Ca(2+), and calmodulin in plant immune responses.


Assuntos
Retroalimentação Fisiológica , Gossypium/imunologia , Gossypium/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Verticillium/fisiologia , Arabidopsis/genética , Cálcio/metabolismo , Sinalização do Cálcio/genética , Núcleo Celular/metabolismo , Citosol/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Gossypium/genética , Doenças das Plantas/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Ligação Proteica , Domínios Proteicos , Frações Subcelulares/metabolismo , Transativadores/metabolismo , Transcrição Gênica
12.
Plant Cell Physiol ; 55(1): 148-61, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24214268

RESUMO

Examination of aquaporin (AQP) membrane channels in extremophile plants may increase our understanding of plant tolerance to high salt, drought or other conditions. Here, we cloned a tonoplast AQP gene (TsTIP1;2) from the halophyte Thellungiella salsuginea and characterized its biological functions. TsTIP1;2 transcripts accumulate to high levels in several organs, increasing in response to multiple external stimuli. Ectopic overexpression of TsTIP1;2 in Arabidopsis significantly increased plant tolerance to drought, salt and oxidative stresses. TsTIP1;2 had water channel activity when expressed in Xenopus oocytes. TsTIP1;2 was also able to conduct H2O2 molecules into yeast cells in response to oxidative stress. TsTIP1;2 was not permeable to Na(+) in Xenopus oocytes, but it could facilitate the entry of Na(+) ions into plant cell vacuoles by an indirect process under high-salinity conditions. Collectively, these data showed that TsTIP1;2 could mediate the conduction of both H2O and H2O2 across membranes, and may act as a multifunctional contributor to survival of T. salsuginea in highly stressful habitats.


Assuntos
Aquaporinas/metabolismo , Brassicaceae/fisiologia , Estresse Fisiológico , Vacúolos/metabolismo , Animais , Arabidopsis/genética , Arabidopsis/fisiologia , Transporte Biológico/efeitos dos fármacos , Brassicaceae/efeitos dos fármacos , Brassicaceae/genética , Clonagem Molecular , Difusão , Secas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas/genética , Proteínas de Fluorescência Verde/metabolismo , Peróxido de Hidrogênio/metabolismo , Membranas Intracelulares/efeitos dos fármacos , Membranas Intracelulares/metabolismo , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Filogenia , Plantas Geneticamente Modificadas , Transporte Proteico/efeitos dos fármacos , Sódio/metabolismo , Cloreto de Sódio/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo , Vacúolos/efeitos dos fármacos , Água/metabolismo , Xenopus
13.
Plant Physiol ; 162(3): 1669-80, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23715527

RESUMO

Plant-specific TEOSINTE-BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factors play crucial roles in development, but their functional mechanisms remain largely unknown. Here, we characterized the cellular functions of the class I TCP transcription factor GhTCP14 from upland cotton (Gossypium hirsutum). GhTCP14 is expressed predominantly in fiber cells, especially at the initiation and elongation stages of development, and its expression increased in response to exogenous auxin. Induced heterologous overexpression of GhTCP14 in Arabidopsis (Arabidopsis thaliana) enhanced initiation and elongation of trichomes and root hairs. In addition, root gravitropism was severely affected, similar to mutant of the auxin efflux carrier PIN-FORMED2 (PIN2) gene. Examination of auxin distribution in GhTCP14-expressing Arabidopsis by observation of auxin-responsive reporters revealed substantial alterations in auxin distribution in sepal trichomes and root cortical regions. Consistent with these changes, expression of the auxin uptake carrier AUXIN1 (AUX1) was up-regulated and PIN2 expression was down-regulated in the GhTCP14-expressing plants. The association of GhTCP14 with auxin responses was also evidenced by the enhanced expression of auxin response gene IAA3, a gene in the AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) family. Electrophoretic mobility shift assays showed that GhTCP14 bound the promoters of PIN2, IAA3, and AUX1, and transactivation assays indicated that GhTCP14 had transcription activation activity. Taken together, these results demonstrate that GhTCP14 is a dual-function transcription factor able to positively or negatively regulate expression of auxin response and transporter genes, thus potentially acting as a crucial regulator in auxin-mediated differentiation and elongation of cotton fiber cells.


Assuntos
Gossypium/citologia , Gossypium/genética , Ácidos Indolacéticos/metabolismo , Epiderme Vegetal/citologia , Epiderme Vegetal/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Diferenciação Celular , Núcleo Celular/metabolismo , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Gossypium/metabolismo , Gravitropismo/genética , Dados de Sequência Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/genética , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Tricomas/genética , Tricomas/metabolismo
14.
Aging Clin Exp Res ; 26(5): 483-9, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24659493

RESUMO

BACKGROUND AND AIMS: The objective of this study is to observe the effect of alpha-lipoic acid (ALA) on Pod injury by anti-inflammation and explore its possible renal protective mechanism. METHODS: A total of 36 cases with type 2 diabetes with microalbuminuria and fasting plasma glucose (FPG) levels less than 9 mmol/L and glycated hemoglobin A1c (HbA1c) ≤9.0 % were recruited to be treated with ALA (600 mg, daily) for 6 months (group DA). Another 30 healthy individuals were chosen as normal controls (group NC). The levels of serum creatinine (Cr), FPG, and HbA1c were detected; blood pressure was recorded; and early morning urine samples (corrected for urinary Cr) were collected for the examination of urinary monocyte chemoattractant protein-1 (MCP-1), transforming growth factor-ß1 (TGF-ß1), podocalyxin (PCX), nephrin, albumin and Cr in group NC and group DA at the baseline and the sixth month. RESULTS: The excretions of urinary MCP-1, TGF-ß1, PCX, nephrin and albumin to Cr ratio (abbreviated as UMCR, UTCR, UPCR, UNCR and UACR respectively) were significantly increased in group DA compared with group NC (all P < 0.01), and after 6-month treatment, all indexes mentioned above decreased markedly (P < 0.05), while FPG and HbA1c had no obvious changes. Additionally, there was a positive correlation between UMCR, UTCR with UPCR, UNCR and UACR, respectively (all P < 0.01). CONCLUSIONS: Anti-inflammation of ALA in vivo and local kidney is implicated in the protection of glomerular Pod injury in patients with type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2/imunologia , Podócitos/patologia , Ácido Tióctico/química , Adulto , Albuminas/análise , Anti-Inflamatórios/química , Glicemia/análise , Pressão Sanguínea , Estudos de Casos e Controles , Quimiocina CCL2/urina , Creatinina/sangue , Creatinina/urina , Feminino , Hemoglobinas Glicadas/metabolismo , Humanos , Inflamação , Masculino , Proteínas de Membrana/urina , Pessoa de Meia-Idade , Monócitos/citologia , Podócitos/citologia , Sialoglicoproteínas/urina , Transdução de Sinais , Fator de Crescimento Transformador beta1/urina
15.
Int J Biol Macromol ; 266(Pt 1): 130637, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38490396

RESUMO

Acute lung injury (ALI) is a prevalent and critical condition in clinical practice. Although certain pharmacological interventions have demonstrated benefits in preclinical studies, none have been proven entirely effective thus far. Therefore, the development of more efficient treatment strategies for ALI is imperative. In this study, we prepared nanostructured lipid carriers (NLCs) conjugated with anti-VCAM-1 antibodies to encapsulate melatonin (MLT), resulting in VCAM/MLT NLCs. This approach aimed to enhance the distribution of melatonin in lung vascular endothelial cells. The VCAM/MLT NLCs had an average diameter of 364 nm, high drug loading content, and a sustained drug release profile. Notably, the NLCs conjugated with anti-VCAM-1 antibodies demonstrated more specific cellular delivery mediated by the VCAM-1 receptors, increased cellular internalization, and enhanced accumulation in lung tissues. Treatment with VCAM/MLT NLCs effectively alleviated pulmonary inflammation by activating NLRP3 inflammasome-dependent pyroptosis through up-regulation of Sirtuin 1. Our findings suggest that VCAM/MLT NLCs demonstrate remarkable therapeutic effects on ALI in both in vitro and in vivo settings, making them a promising and efficient treatment strategy for ALI.


Assuntos
Lesão Pulmonar Aguda , Melatonina , Nanoestruturas , Molécula 1 de Adesão de Célula Vascular , Animais , Humanos , Masculino , Camundongos , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Portadores de Fármacos/química , Inflamassomos/metabolismo , Lipídeos/química , Melatonina/farmacologia , Melatonina/administração & dosagem , Nanoestruturas/química , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Sirtuína 1/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo
16.
Heliyon ; 10(9): e30015, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38707411

RESUMO

Here, we presented 6 patients who were admitted to our institution and diagnosed as myasthenia gravis (MG) with tongue muscle atrophy. All these 6 patients developed symptoms of bulbar muscle weakness in acetylcholine receptor antibodies positive MG (AChR-MG) (3/6), muscle-specific receptor tyrosine kinase antibodies positive MG (MuSK-MG) (1/6), and sero-negative MG (2/6). Most of patients had "triple-furrowed" tongue except for patient 2 with irregular atrophy of tongue muscle. Tongue muscle atrophy occurs in patients with MuSK-MG, AChR-MG, and sero-negative MG. Atrophied tongue muscles of five patients with MG were reversible after immunotherapy.

17.
J Fungi (Basel) ; 10(8)2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39194912

RESUMO

Phyllachora (Phyllachoraceae, Phyllachorales) species are parasitic fungi with a wide global distribution, causing tar spots on plants. In this study, we describe three newly discovered species: Phyllachora chongzhouensis, Phyllachora neidongensis, and Phyllachora huiliensis from Poaceae in China. These species were characterized using morphological traits and multi-locus phylogeny based on the internal transcribed spacer region (ITS) with the intervening 5.8S rRNA gene, the large subunit of the rRNA gene (LSU), and the 18S ribosomal RNA gene (SSU). Three known species of P. chloridis, P. graminis, and P. miscanthi have also been redescribed, because, in reviewing the original references of P. chloridis, P. graminis, and P. miscanthi, these were found to be relatively old and in Chinese or abbreviated. In addition, the illustrations were simple. In molecular identification, the ITS sequence is short, while the ITS, LSU, and SSU are incomplete. Therefore, this study provides new important references for the redescription of three known species and provides further evidence for the identification of new taxa.

18.
Heliyon ; 10(1): e23745, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38192761

RESUMO

Background: Myasthenia gravis (MG) is an autoimmune disease characterized by generalized skeletal muscle contraction weakness due to autoantibodies targeting neural-muscular junctions. Here, we investigated the relationship between key cytokines and MG type, disease course, antibodies, and comorbidities. Method: Cytokine levels in serum samples collected from MG (n = 45) and healthy control (HC, n = 38) patients from January 2020 to June 2022 were quantified via flow cytometry. Results: Levels of IL-6 were higher in the MG group versus healthy individuals (p = 0.026) and in patients with generalized versus ocular MG (p = 0.019). IL-6 levels were positively correlated with QMG score. In patients with MG with both AChR and Titin antibodies, serum levels of sFas and granulysin were higher than in those with AChR alone (p = 0.036, and p = 0.028, respectively). LOMG had a reduction in serum levels of IL-2 compared to EOMG (p = 0.036). LOMG patients with diabetes had lower serum levels of IL-2, IL-4, and IFN-γ (p = 0.044, p = 0.038, and p = 0.047, respectively) versus those without diabetes. sFas in the MG with Abnormal thymus were reduced compared to those in MG with Normal thymus (p = 0.008). Conclusions: This study revealed a positive correlation between IL-6 level and MG status. Serum cytokine levels of the AChR + Titin MG group differed from those of the AChR group. LOMG had a lower IL-2 level. Comorbidities affect some cytokines in peripheral blood in MG serum.

19.
Asian J Psychiatr ; 96: 104042, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38615577

RESUMO

BACKGROUND: Previous studies have documented thalamic functional connectivity (FC) abnormalities in schizophrenia, typically examining the thalamus as a whole. The specific link between subregional thalamic FC and cognitive deficits in first-episode schizophrenia (FES) remains unexplored. METHODS: Using data from resting-state functional magnetic resonance imaging, we compared whole-brain FC with thalamic subregions between patients and HCs, and analyzed FC changes in drug-naïve patients separately. We then examined correlations between FC abnormalities with both cognitive impairment and clinical symptoms. RESULTS: A total of 33 FES patients (20 drug-naïve) and 32 age- and sex-matched healthy controls (HCs) were included. Compared to HCs, FES patients exhibited increased FC between specific thalamic subregions and cortical regions, particularly bilateral middle temporal lobe and cuneus gyrus, left medial superior frontal gyrus, and right inferior/superior occipital gyrus. Decreased FC was observed between certain thalamic subregions and the left inferior frontal triangle. These findings were largely consistent in drug-naïve patients. Notably, deficits in social cognition and visual learning in FES patients correlated with increased FC between certain thalamic subregions and cortical regions involving the right superior occipital gyrus and cuneus gyrus. The severity of negative symptoms was associated with increased FC between a thalamic subregion and the left middle temporal gyrus. CONCLUSION: Our findings suggest FC abnormalities between thalamic subregions and cortical areas in FES patients. Increased FC correlated with cognitive deficits and negative symptoms, highlighting the importance of thalamo-cortical connectivity in the pathophysiology of schizophrenia.


Assuntos
Disfunção Cognitiva , Imageamento por Ressonância Magnética , Esquizofrenia , Tálamo , Humanos , Esquizofrenia/fisiopatologia , Esquizofrenia/diagnóstico por imagem , Masculino , Feminino , Tálamo/fisiopatologia , Tálamo/diagnóstico por imagem , Adulto , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/diagnóstico por imagem , Adulto Jovem , Córtex Cerebral/fisiopatologia , Córtex Cerebral/diagnóstico por imagem , Conectoma , Rede Nervosa/fisiopatologia , Rede Nervosa/diagnóstico por imagem
20.
Clin Transl Immunology ; 12(5): e1450, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37223338

RESUMO

Objectives: Myasthenia gravis (MG) is a classic autoantibody-mediated disease in which pathogenic antibodies target postsynaptic membrane components, causing fluctuating skeletal muscle weakness and fatigue. Natural killer (NK) cells are heterogeneous lymphocytes that have gained increasing attention owing to their potential roles in autoimmune disorders. This study will investigate the relationship between the distinct NK cell subsets and MG pathogenesis. Methods: A total of 33 MG patients and 19 healthy controls were enrolled in the present study. Circulating NK cells, their subtypes and follicular helper T cells were analysed by flow cytometry. Serum acetylcholine receptor (AChR) antibody levels were determined by ELISA. The role of NK cells in the regulation of B cells was verified using a co-culture assay. Results: Myasthenia gravis patients with acute exacerbations had a reduced number of total NK cells, CD56dim NK cells and IFN-γ-secreting NK cells in the peripheral blood, while CXCR5+ NK cells were significantly elevated. CXCR5+ NK cells expressed a higher level of ICOS and PD-1 and a lower level of IFN-γ than those in CXCR5- NK cells and were positively correlated with Tfh cell and AChR antibody levels. In vitro experiments demonstrated that NK cells suppressed plasmablast differentiation while promoting CD80 and PD-L1 expression on B cells in an IFN-γ-dependent manner. Furthermore, CXCR5- NK cells inhibited plasmablast differentiation, while CXCR5+ NK cells could more efficiently promote B cell proliferation. Conclusion: These results reveal that CXCR5+ NK cells exhibit distinct phenotypes and functions compared with CXCR5- NK cells and might participate in the pathogenesis of MG.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa