RESUMO
The size-dependent and collective physical properties of nanocrystals (NCs) and their self-assembled superlattices (SLs) enable the study of mesoscale phenomena and the design of metamaterials for a broad range of applications. However, the limited mobility of NC building blocks in dried NCSLs often hampers the potential for employing postdeposition methods to produce high-quality NCSLs. In this study, we present tailored promesogenic ligands that exhibit a lubricating property akin to thermotropic liquid crystals. The lubricating ability of ligands is thermally triggerable, allowing the dry solid NC aggregates deposited on the substrates with poor ordering to be transformed into NCSLs with high crystallinity and preferred orientations. The interplay between the dynamic behavior of NCSLs and the molecular structure of the ligands is elucidated through a comprehensive analysis of their lubricating efficacy using both experimental and simulation approaches. Coarse-grained molecular dynamic modeling suggests that a shielding layer from mesogens prevents the interdigitation of ligand tails, facilitating the sliding between outer shells and consequently enhancing the mobility of NC building blocks. The dynamic organization of NCSLs can also be triggered with high spatial resolution by laser illumination. The principles, kinetics, and utility of lubricating ligands could be generalized to unlock stimuli-responsive metamaterials from NCSLs and contribute to the fabrication of NCSLs.
RESUMO
The intense research activities on the hybrid organic-inorganic perovskites (HOIPs) have led to the greatly improved light absorbers for solar cells with high power conversion efficiency (PCE). However, it is still challenging to find an alternative lead-free perovskite to replace the organohalide lead perovskites to achieve high PCE. This is because both previous experimental and theoretical investigations have shown that the Pb2+ cations play a dominating role in contributing the desirable frontier electronic bands of the HOIPs for light absorbing. Recent advances in the chemical synthesis of three-dimensional (3D) metal-free perovskites, by replacing Pb2+ with NH4 +, have markedly enriched the family of multifunctionalized perovskites (Ye et al., Science2018, 361, 151-155). These metal-free perovskites possess the chemical formula of A(NH4)X3, where A is divalent organic cations and X denotes halogen atoms. Without involving transition-metal cations, the metal-free A(NH4)X3 perovskites can entail notably different frontier electronic band features from those of the organohalide lead perovskites. Indeed, the valence and conduction bands of A(NH4)X3 perovskites are mainly attributed by the halogen atoms and the divalent A2+ organic cations, respectively. Importantly, a linear relationship between the bandgaps of A(NH4)X3 perovskites and the lowest unoccupied molecular orbital energies of the A2+ cations is identified, suggesting that bandgaps can be tailored via molecular design, especially through a chemical modification of the A2+ cations. Our comprehensive computational study and molecular design predict a metal-free perovskite, namely, 6-ammonio-1-methyl-5-nitropyrimidin-1-ium-(NH4)I3, with a desirable bandgap of â¼1.74 eV and good optical absorption property, both being important requirements for photovoltaic applications. Moreover, the application of strain can further fine-tune the bandgap of this metal-free perovskite. Our proposed design principle not only offers chemical insights into the structure-property relationship of the multifunctional metal-free perovskites but also can facilitate the discovery of highly efficient alternative, lead-free perovskites for potential photovoltaic or optoelectronic applications.