Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell ; 33(6): 1961-1979, 2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-33768238

RESUMO

Light is a key environmental cue that fundamentally regulates plant growth and development, which is mediated by the multiple photoreceptors including the blue light (BL) photoreceptor cryptochrome 1 (CRY1). The signaling mechanism of Arabidopsis thaliana CRY1 involves direct interactions with CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1)/SUPPRESSOR OF PHYA-105 1 and stabilization of COP1 substrate ELONGATED HYPOCOTYL 5 (HY5). H2A.Z is an evolutionarily conserved histone variant, which plays a critical role in transcriptional regulation through its deposition in chromatin catalyzed by SWR1 complex. Here we show that CRY1 physically interacts with SWC6 and ARP6, the SWR1 complex core subunits that are essential for mediating H2A.Z deposition, in a BL-dependent manner, and that BL-activated CRY1 enhances the interaction of SWC6 with ARP6. Moreover, HY5 physically interacts with SWC6 and ARP6 to direct the recruitment of SWR1 complex to HY5 target loci. Based on previous studies and our findings, we propose that CRY1 promotes H2A.Z deposition to regulate HY5 target gene expression and photomorphogenesis in BL through the enhancement of both SWR1 complex activity and HY5 recruitment of SWR1 complex to HY5 target loci, which is likely mediated by interactions of CRY1 with SWC6 and ARP6, and CRY1 stabilization of HY5, respectively.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas Cromossômicas não Histona/metabolismo , Criptocromos/metabolismo , Histonas/metabolismo , Arabidopsis/citologia , Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Clorofila/biossíntese , Clorofila/metabolismo , Proteínas Cromossômicas não Histona/genética , Criptocromos/genética , Regulação da Expressão Gênica de Plantas , Histonas/genética , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/metabolismo , Luz , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Fitocromo A/genética , Fitocromo A/metabolismo , Fitocromo B/genética , Fitocromo B/metabolismo , Plantas Geneticamente Modificadas , Mapas de Interação de Proteínas , Nicotiana/genética , Nicotiana/metabolismo
2.
New Phytol ; 234(4): 1347-1362, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34449898

RESUMO

Arabidopsis cryptochrome 1 (CRY1) is an important blue light photoreceptor that promotes photomorphogenesis under blue light. The blue light photoreceptors CRY2 and phototropin 1, and the red/far-red light photoreceptors phytochromes B and A undergo degradation in response to blue and red light, respectively. This study investigated whether and how CRY1 might undergo degradation in response to high-intensity blue light (HBL). We demonstrated that CRY1 is ubiquitinated and degraded through the 26S proteasome pathway in response to HBL. We found that the E3 ubiquitin ligase constitutive photomorphogenic 1 (COP1) is involved in mediating HBL-induced ubiquitination and degradation of CRY1. We also found that the E3 ubiquitin ligases LRBs physically interact with CRY1 and are also involved in mediating CRY1 ubiquitination and degradation in response to HBL. We further demonstrated that blue-light inhibitor of cryptochromes 1 interacts with CRY1 in a blue-light-dependent manner to inhibit CRY1 dimerization/oligomerization, leading to the repression of HBL-induced degradation of CRY1. Our findings indicate that the regulation of CRY1 stability in HBL is coordinated by COP1 and LRBs, which provides a mechanism by which CRY1 attenuates its own signaling and optimizes photomorphogenesis under HBL.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Criptocromos/metabolismo , Regulação da Expressão Gênica de Plantas , Luz , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
3.
J Integr Plant Biol ; 63(11): 1967-1981, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34469075

RESUMO

Cryptochromes are blue light photoreceptors that mediate various light responses in plants and mammals. The heterotrimeric G-protein is known to regulate various physiological processes in plants and mammals. In Arabidopsis, cryptochrome 1 (CRY1) and the G-protein ß subunit AGB1 act antagonistically to regulate stomatal development. The molecular mechanism by which CRY1 and AGB1 regulate this process remains unknown. Here, we show that Arabidopsis CRY1 acts partially through AGB1, and AGB1 acts through SPEECHLESS (SPCH), a master transcription factor that drives stomatal initiation and proliferation, to regulate stomatal development. We demonstrate that AGB1 physically interacts with SPCH to block the bHLH DNA-binding domain of SPCH and inhibit its DNA-binding activity. Moreover, we demonstrate that photoexcited CRY1 represses the interaction of AGB1 with SPCH to release AGB1 inhibition of SPCH DNA-binding activity, leading to the expression of SPCH-target genes promoting stomatal development. Taken together, our results suggest that the mechanism by which CRY1 promotes stomatal development involves positive regulation of the DNA-binding activity of SPCH mediated by CRY1 inhibition of the AGB1-SPCH interaction. We propose that the antagonistic regulation of SPCH DNA-binding activity by CRY1 and AGB1 may allow plants to balance light and G-protein signaling and optimize stomatal density and pattern.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Criptocromos/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Estômatos de Plantas/crescimento & desenvolvimento , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/efeitos da radiação , Regulação da Expressão Gênica de Plantas
4.
Front Plant Sci ; 13: 865019, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35432407

RESUMO

Phytochromes A and B (phyA and phyB) are the far-red and red lights photoreceptors mediating many light responses in Arabidopsis thaliana. Brassinosteroid (BR) is a pivotal phytohormone regulating a variety of plant developmental processes including photomorphogenesis. It is known that phyB interacts with BES1 to inhibit its DNA-binding activity and repress BR signaling. Here, we show that far-red and red lights modulate BR signaling through phyA and phyB regulation of the stability of BIN2, a glycogen synthase kinase 3 (GSK3)-like kinase that phosphorylates BES1/BZR1 to inhibit BR signaling. The BIN2 gain-of-function mutant bin2-1 displays an enhanced photomorphogenic phenotype in both far-red and red lights. phyA-enhanced accumulation of BIN2 promotes the phosphorylation of BES1 in far-red light. BIN2 acts genetically downstream from PHYA to regulate photomorphogenesis under far-red light. Both phyA and phyB interact directly with BIN2, which may promote the interaction of BIN2 with BES1 and induce the phosphorylation of BES1. Our results suggest that far-red and red lights inhibit BR signaling through phyA and phyB stabilization of BIN2 and promotion of BES1 phosphorylation, which defines a new layer of the regulatory mechanism that allows plants to coordinate light and BR signaling pathways to optimize photomorphogenesis.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa