Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Mol Med ; 28(4): e18145, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38332517

RESUMO

Base editors are emerging as powerful tools to correct single-nucleotide variants and treat genetic diseases. In particular, the adenine base editors (ABEs) exhibit robust and accurate adenine-to-guanidine editing capacity and have entered the clinical stage for cardiovascular therapy. Despite the tremendous progress using ABEs to treat heart diseases, a standard technical route toward successful ABE-based therapy remains to be fully established. In this study, we harnessed adeno-associated virus (AAV) and a mouse model carrying the cardiomyopathy-causing Lmna c.1621C > T mutation to demonstrate key steps and concerns in designing a cardiac ABE experiment in vivo. We found DeepABE as a reliable deep-learning-based model to predict ABE editing outcomes in the heart. Screening of sgRNAs for a Cas9 mutant with relieved protospacer adjacent motif (PAM) allowed the reduction of bystander editing. The ABE editing efficiency can be significantly enhanced by modifying the TadA and Cas9 variants, which are core components of ABEs. The ABE systems can be delivered into the heart via either dual AAV or all-in-one AAV vectors. Together, this study showcased crucial technical considerations in designing an ABE system for the heart and pointed out major challenges in further improvement of this new technology for gene therapy.


Assuntos
Adenina , Edição de Genes , Animais , Camundongos , Terapia Genética , Mutação/genética , RNA Guia de Sistemas CRISPR-Cas
2.
Acta Pharmacol Sin ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39043970

RESUMO

Z-discs are core ultrastructural organizers of cardiomyocytes that modulate many facets of cardiac pathogenesis. Yet a comprehensive proteomic atlas of Z-disc-associated components remain incomplete. Here, we established an adeno-associated virus (AAV)-delivered, cardiomyocyte-specific, proximity-labeling approach to characterize the Z-disc proteome in vivo. We found palmdelphin (PALMD) as a novel Z-disc-associated protein in both adult murine cardiomyocytes and human pluripotent stem cell-derived cardiomyocytes. Germline and cardiomyocyte-specific Palmd knockout mice were grossly normal at baseline but exhibited compromised cardiac hypertrophy and aggravated cardiac injury upon long-term isoproterenol treatment. By contrast, cardiomyocyte-specific PALMD overexpression was sufficient to mitigate isoproterenol-induced cardiac injury. PALMD ablation perturbed the transverse tubule (T-tubule)-sarcoplasmic reticulum (SR) ultrastructures, which formed the Z-disc-associated junctional membrane complex (JMC) essential for calcium handling and cardiac function. These phenotypes were associated with the reduction of nexilin (NEXN), a crucial Z-disc-associated protein that is essential for both Z-disc and JMC structures and functions. PALMD interacted with NEXN and enhanced its protein stability while the Nexn mRNA level was not affected. AAV-based NEXN addback rescued the exacerbated cardiac injury in isoproterenol-treated PALMD-depleted mice. Together, this study discovered PALMD as a potential target for myocardial protection and highlighted in vivo proximity proteomics as a powerful approach to nominate novel players regulating cardiac pathogenesis.

4.
bioRxiv ; 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38106146

RESUMO

Z-lines are core ultrastructural organizers of cardiomyocytes that modulate many facets of cardiac pathogenesis. Yet a comprehensive proteomic atlas of Z-line-associated components remain incomplete. Here, we established an adeno-associated virus (AAV)-delivered, cardiomyocyte-specific, proximity-labeling approach to characterize the Z-line proteome in vivo. We found palmdelphin (PALMD) as a novel Z-line-associated protein in both adult murine cardiomyocytes and human pluripotent stem cell-derived cardiomyocytes. Germline and cardiomyocyte-specific palmd knockout mice were grossly normal at baseline but exhibited compromised cardiac hypertrophy and aggravated cardiac injury upon long-term isoproterenol treatment. By contrast, cardiomyocyte-specific PALMD overexpression was sufficient to mitigate isoproterenol-induced cardiac injury. PALMD ablation perturbed transverse tubules (T-tubules) and their association with sarcoplasmic reticulum, which formed the Z-line-associated junctional membrane complex (JMC) essential for calcium handling and cardiac function. These phenotypes were associated with disrupted localization of T-tubule markers caveolin-3 (CAV3) and junctophilin-2 (JPH2) and the reduction of nexilin (NEXN) protein, a crucial Z-line-associated protein that is essential for both Z-line and JMC structures and functions. PALMD was found to interact with NEXN and enhance its protein stability while the Nexn mRNA level was not affected. Together, this study discovered PALMD as a potential target for myocardial protection and highlighted in vivo proximity proteomics as a powerful approach to nominate novel players regulating cardiac pathogenesis. Highlights: In vivo proximity proteomics uncover novel Z-line components that are undetected in in vitro proximity proteomics in cardiomyocytes.PALMD is a novel Z-line-associated protein that is dispensable for baseline cardiomyocyte function in vivo.PALMD mitigates cardiac dysfunction and myocardial injury after repeated isoproterenol insults.PALMD stabilizes NEXN, an essential Z-line-associated regulator of the junctional membrane complex and cardiac systolic function.

5.
Front Cell Dev Biol ; 10: 864516, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35433671

RESUMO

Sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2) is a key player in cardiomyocyte calcium handling and also a classic target in the gene therapy for heart failure. SERCA2 expression dramatically increases during cardiomyocyte maturation in the postnatal phase of heart development, which is essential for the heart to acquire its full function in adults. However, whether and how SERCA2 regulates cardiomyocyte maturation remains unclear. Here, we performed Cas9/AAV9-mediated somatic mutagenesis (CASAAV) in mice and achieved cardiomyocyte-specific knockout of Atp2a2, the gene coding SERCA2. Through a cardiac genetic mosaic analysis, we demonstrated the cell-autonomous role of SERCA2 in building key ultrastructures of mature ventricular cardiomyocytes, including transverse-tubules and sarcomeres. SERCA2 also exerts a profound impact on oxidative respiration gene expression and sarcomere isoform switching from Myh7/Tnni1 to Myh6/Tnni3, which are transcriptional hallmarks of cardiomyocyte maturation. Together, this study uncovered a pivotal role of SERCA2 in heart development and provided new insights about SERCA2-based cardiac gene therapy.

6.
Heliyon ; 8(12): e12468, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36593854

RESUMO

Objective: This study aimed to address the status, role, and mechanism of sympathetic nerve infiltration in the progression of stomach adenocarcinoma (STAD). Methods: Sympathetic nerve and its neurotransmitter NE, ß-ARs, and associated signaling molecules in the STAD tissues and the adjacent tissues from 46 STAD patients were examined using immunostaining, HPLC, and western blotting. The effects and mechanisms of ß2-AR activation on the proliferation, migration and invasion of AGS and SGC-7901 gastric cancer (GC) cell lines were examined using CCK-8, transwell, and western blotting assays. Correlations between genes and STAD survival were analyzed using bioinformatics. Results: Striking sympathetic nerve infiltration, elevations of NGF, TrkA, GAP43, TH, S100, NE, ß2-AR, YKL-40, syndecan-1, MMP9, CD206, and CD31 were observed in the STAD tissues compared to the adjacent tissues. Activation of ß2-AR in the two GC cell lines significantly amplified the expressions of NGF, YKL-40, MMP9, syndecan-1, p-STAT3 and p-ERK, and increased GC cell proliferation, migration and invasion. Bioinformatic analyses revealed positive correlations of NGF, ß2-AR, syndecan-1, and macrophage infiltration, respectively, with low survival of STAD, of ß2-AR respectively with STAT3, ERK1/2 (MAPK1/3), YKL-40, MMP9, and syndecan-1, and of YKL-40 with MMP9. Conclusion: Sympathetic nerves significantly infiltrated into human STAD tissues as a result of high NGF and TrkA expressions; elevated NE led to overactivation of ß2-AR-STAT3/ERK-YKL-40 signaling pathway, and finally caused cancer cell growth and invasion, M2 macrophage infiltration, angiogenesis, matrix degradation and STAD metastasis and progression.

7.
Int J Cardiol ; 363: 149-158, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35714719

RESUMO

Dilated cardiomyopathy (DCM) is a major cause of heart failure. LMNA variants contribute to 6-10% DCM cases, but the underlying mechanisms remain incompletely understood. Here, we reported two patients carrying the LMNA c.1621C > T/ p.R541C variant and generated a knock-in mouse model (LmnaRC) to study the role of this variant in DCM pathogenesis. We found LmnaRC/RC mice exhibited ventricular dilation and reduced systolic functions at 6 months after birth. The LmnaRC/RC cardiomyocytes increased in size but no nuclear morphology defects were detected. Transcriptomic and microscopic analyses revealed suppressed gene expression and perturbed ultrastructure in LmnaRC/RC mitochondria. These defects were associated with increased heterochromatin structures and epigenetic markers including H3K9me2/3. Together, these data implied that the LMNA c.1621C > T/ p.R541C variant enhanced heterochromatic gene suppression and disrupted mitochondria functions as a cause of DCM.


Assuntos
Cardiomiopatia Dilatada , Lamina Tipo A/metabolismo , Animais , Cardiomiopatia Dilatada/complicações , Modelos Animais de Doenças , Humanos , Lamina Tipo A/genética , Camundongos , Mutação/genética , Miócitos Cardíacos/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa