Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Nanotechnology ; 32(31)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-33892481

RESUMO

Designing uniform plasmonic surfaces in a large area is highly recommended for surface-enhanced Raman scattering (SERS). As periodic morphologies exhibit uniform SERS and optical tunability, diverse fabrication methods of periodic nanostructures have been reported for SERS applications. Laser interference lithography (LIL) is one of the most versatile tools since it can rapidly fabricate periodic patterns without the usage of photomasks. Here, we explore complex interference patterns for spatially uniform SERS sensors and its cost-effective fabrication method termed multi-exposure laser interference lithography (MELIL). MELIL can produce nearly periodic profiles along every direction confirmed by mathematical background, and in virtue of periodicity, we show that highly uniform Raman scattering (relative standard deviation <6%) can also be achievable in complex geometries as the conventional hole patterns. We quantitatively characterize the Raman enhancement of the MELIL complex patterns after two different metal deposition processes, Au e-beam evaporation and Ag electroplating, which results in 0.387 × 105and 1.451 × 105in enhancement factor respectively. This alternative, vacuum-free electroplating method realizes an even more cost-effective process with enhanced performance. We further conduct the optical simulation for MELIL complex patterns which exhibits the broadened and shifted absorption peaks. This result supports the potential of the expanded optical tunability of the suggested process.

2.
Sensors (Basel) ; 20(18)2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32906807

RESUMO

The analysis of circulating tumor cells (CTCs) in the peripheral blood of cancer patients is critical in clinical research for further investigation of tumor progression and metastasis. In this study, we present a novel surface-enhanced Raman scattering (SERS) substrate for the efficient capture and characterization of cancer cells using silver nanoparticles-reduced graphene oxide (AgNPs-rGO) composites. A pulsed laser reduction of silver nanowire-graphene oxide (AgNW-GO) mixture films induces hot-spot formations among AgNPs and artificial biointerfaces consisting of rGOs. We also use in situ electric field-assisted fabrication methods to enhance the roughness of the SERS substrate. The AgNW-GO mixture films, well suited for the proposed process due to its inherent electrophoretic motion, is adjusted between indium tin oxide (ITO) transparent electrodes and the nano-undulated surface is generated by applying direct-current (DC) electric fields during the laser process. As a result, MCF7 breast cancer cells are efficiently captured on the AgNPs-rGO substrates, about four times higher than the AgNWs-GO films, and the captured living cells are successfully analyzed by SERS spectroscopy. Our newly designed bifunctional substrate can be applied as an effective system for the capture and characterization of CTCs.


Assuntos
Nanopartículas Metálicas , Células Neoplásicas Circulantes , Análise Espectral Raman , Técnicas Biossensoriais , Grafite , Humanos , Prata
3.
Sensors (Basel) ; 18(11)2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30469441

RESUMO

Surface-enhanced Raman spectroscopy (SERS) is a promising analytical tool due to its label-free detection ability and superior sensitivity, which enable the detection of single molecules. Since its sensitivity is highly dependent on localized surface plasmon resonance, various methods have been applied for electric field-enhanced metal nanostructures. Despite the intensive research on practical applications of SERS, fabricating a sensitive and reproducible SERS sensor using a simple and low-cost process remains a challenge. Here, we report a simple strategy to produce a large-scale gold nanoparticle array based on laser interference lithography and the electrophoretic deposition of gold nanoparticles, generated through a pulsed laser ablation in liquid process. The fabricated gold nanoparticle array produced a sensitive, reproducible SERS signal, which allowed Rhodamine 6G to be detected at a concentration as low as 10-8 M, with an enhancement factor of 1.25 × 105. This advantageous fabrication strategy is expected to enable practical SERS applications.

4.
Langmuir ; 33(8): 1854-1860, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28186777

RESUMO

Controlling the surface morphology of the electrode on the nanoscale has been studied extensively because the surface morphology of a material directly leads to the functionalization in various fields of studies. In this study, we designed a simple and cost-effective method to fine-tune the surface morphology and create controlled nanopores on the silver electrode by utilizing 2-ethoxyethanol and two successive heat treatments. High electrical conductivity and mechanical robustness of nanoporous silver corroborate its prospect to be employed in various applications requiring a certain degree of flexibility. As a proof-of-concept, a high-performance supercapacitor was fabricated by electrodepositing MnO2. This method is expected to be useful in various electronic applications as well as energy storage devices.

5.
Small ; 9(12): 2111-8, 2013 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-23335383

RESUMO

A novel adaptive electrode fabrication method using optically self-selected interfacial adhesion between a laser-processed metal layer and polymer film is introduced to fabricate cost-effectively a high-resolution arbitrary electrode with high conductivity. The quality is close to that from vacuum deposition on a highly heat sensitive polymer film, with active response to various design requirements. A highly conductive metal film (resistivity: 3.6 µΩ cm) below a 5 µm line width with a uniform stepwise profile and mirror surface quality (R(rms) : 5-6 nm) is fabricated on a cheap polymer film with a heat resistance limit of below 100 °C. Severe durability tests are successfully completed without using any adhesion promoters. Finally, a highly transparent and conductive electrode with a transparency above 95% and sheet resistance of less than 10 Ω sq⁻¹ is fabricated on a polymer film and on glass by using this method. These results can help realize a potential high-throughput, low-cost, solution-processable replacement for transparent conductive oxides.

6.
Small ; 9(23): 4036-44, 2013 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-23784859

RESUMO

This paper reports solution-processed, high-efficiency polymer light-emitting diodes fabricated by a new type of roll-to-roll coating method under ambient air conditions. A noble roll-to-roll cohesive coating system utilizes only natural gravity and the surface tension of the solution to flow out from the capillary to the surface of the substrate. Because this mechanism uses a minimally cohesive solution, the roll-to-roll cohesive coating can effectively realize an ultra-thin film thickness for the electron injection layer. In addition, the roll-to-roll cohesive coating enables the fabrication of a thicker polymer anode film more than 250 nm at one time by modification of the surface energy and without wasting the solution. It is observed that the standard sheet resistance deviation of the polymer anode is only 2.32 Ω/□ over 50 000 bending cycles. The standard sheet resistance deviation of the polymer anode in the different bending angles (0 to 180°) is 0.313 Ω/□, but the case of the ITO-PET is 104.93 Ω/□. The average surface roughness of the polymer anode measured by atomic force microscopy is only 1.06 nm. Because the surface of the polymer anode has a better quality, the leakage current of the polymer light-emitting diodes (PLEDs) using the polymer anode is much lower than that using the ITO-PET substrate. The luminous power efficiency of the two devices is 4.13 lm/W for the polymer anode and 3.21 lm/W for the ITO-PET. Consequently, the PLEDs made by using the polymer anode exhibited 28% enhanced performance because the polymer anode represents not only a higher transparency than the ITO-PET in the wavelength of 560 nm but also greatly reduced roughness. The optimized the maximum current efficiency and power efficiency of the device show around 6.1 cd/A and 5.1 lm/W, respectively, which is comparable to the case of using the ITO-glass.


Assuntos
Eletrodos , Polímeros/química , Polímeros/classificação , Iluminação , Nanotecnologia
7.
Opt Express ; 20(27): 29111-20, 2012 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-23263149

RESUMO

Adaptive mass fabrication method based on laser-induced plasmonic local surface defunctionalization was suggested to realize solution-based high resolution self-patterning on transparent substrate in parallel. After non-patterned functional monolayer was locally deactivated by laser-induced metallic plasma species, various micro/nano metal structures could be simultaneously fabricated by the parallel self-selective deposition of metal nanoparticles on a specific region. This method makes the eco-friendly and cost-effective production of high resolution pattern possible. Moreover, it can respond to design change actively due to the broad controllable range and easy change of key patterning specifications such as a resolution (subwavelength~100 µm), thickness (100 nm~6 µm), type (dot and line), and shape.


Assuntos
Lasers , Manufaturas/efeitos da radiação , Ressonância de Plasmônio de Superfície/métodos , Teste de Materiais , Propriedades de Superfície/efeitos da radiação
8.
Small Methods ; 6(5): e2200150, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35388984

RESUMO

Metal microhoneycomb structures have received considerable attention as a type of interaction-efficient functional devices owing to their unique morphology and material properties. Microhoneycomb structures are mainly fabricated using the well-known breath-figure method. However, additional post-treatments are required to produce a metal structure because it is a polymer-based process, and this necessitates expensive, complex, and multi-step fabrication processes. Therefore, a simple, low-cost metal honeycomb fabrication process is necessary. In this paper, the laser patterning of an organometallic solution to produce silver microhoneycomb (Ag microhoneycomb) structures is proposed. Various phenomena such as rapid organic evaporation, silver nanoparticle solidification, and material reorganization from Marangoni flow are found to enable patterning-induced microhoneycomb formation. Parametric studies demonstrate that the pore size can be easily controlled through simple laser parameter changes. In addition, cyclic voltammetry and electrochemical impedance spectroscopy studies confirm the potential electrochemical applications of the Ag microhoneycomb structures based on the variation of electrochemical redox behavior depending on the pore size. Owing to the excellent advantages of one-step laser patterning without any templates, the proposed process will likely promote the practical use of the metal microhoneycomb structures.

9.
ACS Appl Mater Interfaces ; 14(26): 30315-30323, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35732013

RESUMO

Plasmonic color printing has received significant attention owing to its advantages such as nonfading and nontoxic color expression, without necessitating the use of chemical dyes. Recently, color generation from laser-induced plasmonic nanostructures has been extensively explored because of its simplicity, cost-effectiveness, and large-scale processability. However, these methods usually utilize a top-down method that causes unexpected background colors. Here, we proposed a novel method of plasmonic color printing via a bottom-up type laser-induced photomodification process. In the proposed method, selective silver nanoparticles (Ag NPs) structure could be fabricated on a transparent substrate through a unique organometallic solution-based laser patterning process. A set of color palettes was formed on the basis of different processing parameters such as laser fluence, scanning speed, and baking time. This color change was verified by finite-difference time-domain (FDTD) simulations via monitoring the spectral peak shift of the localized surface plasmon resonance (LSPR) at Ag NPs. It was also confirmed that the colors can be fabricated at a relatively high scanning speed (≥10 mm/s) on a large substrate (>300 mm2). Since semitransparent color images can be patterned on various transparent substrates, this process will broaden the application range of laser-induced plasmonic color generation.

10.
Blood ; 113(5): 1129-38, 2009 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-18945963

RESUMO

Individuals with sickle cell disease (SCD) have increased inflammation, a high incidence of airway hyperreactivity (AH), and increased circulating leukotrienes (LT). We show that expression of 5-lipoxygenase and 5-lipoxygenase activating protein (FLAP), key catalytic molecules in the LT pathway, were significantly increased in peripheral blood mononuclear cells (MNCs) in patients with SCD, compared with healthy controls. Placenta growth factor (PlGF), elaborated from erythroid cells, activated MNC and THP-1 monocytic cells to induce LT production. PlGF-mediated increased FLAP mRNA expression occurred via activation of phosphoinositide-3 (PI-3) kinase, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, and hypoxia inducible factor-1alpha (HIF-1alpha). HIF-1alpha small interfering RNA (siRNA) reduced PlGF-induced FLAP expression. FLAP promoter-driven luciferase constructs demonstrated that PlGF-mediated luciferase induction was abrogated upon mutation of HIF-1alpha response element (HRE), but not the nuclear factor-kappaB (NF-kappaB) site in the FLAP promoter; a finding confirmed by chromatin immunoprecipitation (ChIP) analysis. PlGF also increased HIF-1alpha binding to the HRE in the FLAP promoter. Therefore, it is likely that the intrinsically elevated levels of PlGF in SCD subjects contribute to increased LT, which in turn, mediate both inflammation and AH. Herein, we identify a mechanism of increased LT in SCD and show HIF-1alpha as a hypoxia-independent target of PlGF. These studies provide new avenues to ameliorate these complications.


Assuntos
Anemia Falciforme/metabolismo , Proteínas de Transporte/biossíntese , Regulação da Expressão Gênica , Leucotrienos/biossíntese , Proteínas de Membrana/biossíntese , Proteínas da Gravidez/metabolismo , Hipersensibilidade Respiratória/metabolismo , Proteínas Ativadoras de 5-Lipoxigenase , Anemia Falciforme/complicações , Araquidonato 5-Lipoxigenase/metabolismo , Linhagem Celular , Criança , Pré-Escolar , Feminino , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , NADPH Oxidases/metabolismo , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fator de Crescimento Placentário , Hipersensibilidade Respiratória/etiologia , Elementos de Resposta
11.
Opt Express ; 19(3): 2573-9, 2011 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-21369077

RESUMO

In this paper, we present a new laser direct patterning method that selectively cures nanoparticles self-generated from organometallic ink by proper thermal decomposition. This approach has several advantages in the curing rate, resolution and pattern quality compared with the conventional nanoparticle ink based direct laser curing method. It was found that a laser wavelength which is more weakly absorbed by the nanoparticles could produce a more stable and homogeneous curing condition. Finally, arbitrary shaped silver electrodes with narrow width and uniform profile could be achieved on a polymer substrate at a high curing rate of 25 mm/s. This process can be applied for flexible electronics fabrications on heat sensitive polymer substrates.


Assuntos
Tinta , Lasers , Metais/química , Microeletrodos , Nanopartículas/química , Nanopartículas/efeitos da radiação , Compostos Orgânicos/efeitos da radiação , Desenho de Equipamento , Análise de Falha de Equipamento , Teste de Materiais , Metais/efeitos da radiação , Nanopartículas/ultraestrutura , Compostos Orgânicos/química
12.
Sci Rep ; 11(1): 2262, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33500481

RESUMO

As silver nanowires (Ag NWs) are usually manufactured by chemical synthesis, a patterning process is needed to use them as functional devices. Pulsed laser ablation is a promising Ag NW patterning process because it is a simple and inexpensive procedure. However, this process has a disadvantage in that target materials are wasted owing to the subtractive nature of the process involving the removal of unnecessary materials, and large quantities of raw materials are required. In this study, we report a minimum-waste laser patterning process utilizing silver nanoparticle (Ag NP) debris obtained through laser ablation of Ag NWs in liquid media. Since the generated Ag NPs can be used for several applications, wastage of Ag NWs, which is inevitable in conventional laser patterning processes, is dramatically reduced. In addition, electrophoretic deposition of the recycled Ag NPs onto non-ablated Ag NWs allows easy fabrication of junction-enhanced Ag NWs from the deposited Ag NPs. The unique advantage of this method lies in using recycled Ag NPs as building materials, eliminating the additional cost of junction welding Ag NWs. These fabricated Ag NW substrates could be utilized as transparent heaters and stretchable TCEs, thereby validating the effectiveness of the proposed process.

13.
ACS Appl Mater Interfaces ; 10(20): 17223-17231, 2018 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-29726257

RESUMO

The rapid development of electric vehicles is increasing the demand for next-generation fast-charging energy storage devices with a high capacity and long-term stability. Metal oxide/hydroxide pseudocapacitors are the most promising technology because they show a theoretical capacitance that is 10-100 times higher than that of conventional supercapacitors and rate capability and long-term stability that are much higher than those of Li-ion batteries. However, the poor electrical conductivity of metal oxides/hydroxides is a serious obstacle for achieving the theoretical pseudocapacitor performance. Here, a nanoporous silver (np-Ag) structure with a tunable pore size and ligament is developed using a new silver halide electroreduction process. The structural characteristics of np-Ag (e.g., large specific surface area, electric conductivity, and porosity) are desirable for metal oxide-based pseudocapacitors. This work demonstrates an ultra-high-capacity, fast-charging, and long-term cycling pseudocapacitor anode via the development of an np-Ag framework and deposition of a thin layer of Fe2O3 on its surface (np-Ag@Fe2O3). The np-Ag@Fe2O3 anode shows a capacitance of ∼608 F g-1 at 10 A g-1, and ∼84.9% of the capacitance is retained after 6000 charge-discharge cycles. This stable and high-capacity anode, which can be charged within a few tens of seconds, is a promising candidate for next-generation energy storage devices.

14.
Int J Biol Macromol ; 108: 1281-1288, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29129632

RESUMO

In this study, we investigated the antifungal activity and cytotoxicity of ZnO-chitosan nanocomposites (ZnO-C NCs) against Candida albicans and human epithelial type 2 (HEp2) cells, respectively. The crystalline phase, morphology, composition, particle size and optical absorption properties of the synthesized ZnO-C NCs were systematically investigated by various contemporary methods. The X-ray diffraction analysis results showed characteristic diffraction peaks corresponding to both ZnO and chitosan, while field-emission scanning electron microscopy (FESEM) displayed clusters of spherical shaped particulate morphology. UV-vis absorption spectra showed a shift in the optical absorption towards lower wavelength for ZnO-C NCs when compared to ZnO nanoparticles (NPs). The antifungal activity results (against C. albicans) showed that the minimum inhibitory concentration of ZnO NPs and ZnO-C NCs were 200µg/mL and 75µg/mL, respectively, suggesting the greater therapeutic potential of ZnO-C NCs. FESEM analysis results showed the substantial change in the external morphology of C. albicans after treatment with both ZnO NPs and ZnO-C NCs due to the fungal cell membrane damage. ZnO-C NCs displayed lower cytotoxicity with HEp2 cells indicating the good cytocompatibility of the synthesized ZnO-C NCs. It is expected that ZnO and chitosan complement each other and exhibit synergistic effects potential for antimicrobial and biomedical applications.


Assuntos
Antifúngicos/síntese química , Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Quitosana/química , Nanocompostos/química , Óxido de Zinco/química , Antifúngicos/química , Antifúngicos/toxicidade , Técnicas de Química Sintética , Células Hep G2 , Humanos , Testes de Sensibilidade Microbiana
15.
ACS Appl Mater Interfaces ; 8(1): 302-10, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26642259

RESUMO

Conductive polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) ( PEDOT: PSS) has attracted significant attention as a hole transport and electrode layer that substitutes metal electrodes in flexible organic devices. However, its weak cohesion critically limits the reliable integration of PEDOT: PSS in flexible electronics, which highlights the importance of further investigation of the cohesion of PEDOT: PSS. Furthermore, the electrical conductivity of PEDOT: PSS is insufficient for high current-carrying devices such as organic photovoltaics (OPVs) and organic light emitting diodes (OLEDs). In this study, we improve the cohesion and electrical conductivity through adding dimethyl sulfoxide (DMSO), and we demonstrate the significant changes in the properties that are dependent on the wt % of DMSO. In particular, with the addition of 3 wt % DMSO, the maximum enhancements for cohesion and electrical conductivity are observed where the values increase by 470% and 6050%, respectively, due to the inter-PEDOT bridging mechanism. Furthermore, when OLED devices using the PEDOT: PSS films are fabricated using the 3 wt % DMSO, the display exhibits 18% increased current efficiency.

16.
Sci Rep ; 6: 34629, 2016 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-27703204

RESUMO

Single-layer flexible touch sensor that is designed for the indium-tin-oxide (ITO)-free, bendable, durable, multi-sensible, and single layer transparent touch sensor was developed via a low-cost and one-step laser-induced fabrication technology. To this end, an entirely novel approach involving material, device structure, and even fabrication method was adopted. Conventional metal oxides based multilayer touch structure was substituted by the single layer structure composed of integrated silver wire networks of sensors and bezel interconnections. This structure is concurrently fabricated on a glass substitutive plastic film via the laser-induced fabrication method using the low-cost organometallic/nanoparticle hybrid complex. In addition, this study addresses practical solutions to heterochromia and interference problem with a color display unit. As a result, a practical touch sensor is successfully demonstrated through resolving the heterochromia and interference problems with color display unit. This study could provide the breakthrough for early realization of wearable device.

17.
Adv Mater ; 27(41): 6397-403, 2015 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-26372164

RESUMO

Laser induced selective photothermochemical reduction is demonstrated to locally and reversibly control the oxidation state of Cu and Cu oxide nanowires in ambient conditions without any inert gas environment. This new concept of "nanorecycling" can monolithically integrate Cu and Cu oxide nanowires by restoring oxidized Cu, considered unusable for the electrode, back to a metallic state for repetitive reuse.


Assuntos
Cobre/química , Nanofios/química , Eletrodos , Lasers , Oxirredução , Espectrometria por Raios X
18.
Adv Mater ; 26(33): 5808-14, 2014 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-24913621

RESUMO

A facile fast laser nanoscale welding process uses the plasmonic effect at a nanowire (NW) junction to suppress oxidation and successfully fabricate a Cu-NW-based percolation-network conductor. The "nanowelding" process does not require an inert or vacuum environment. Due to the low-temperature and fast-process nature, plasmonic laser nanowelding may form Cu-nanowire networks on heat-sensitive, flexible or even stretchable substrates.

19.
Nanoscale Res Lett ; 7(1): 253, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22587669

RESUMO

The dielectric/metal/dielectric multilayer is suitable for a transparent electrode because of its high-optical and high-electrical properties; however, it is fabricated by an expensive and inefficient multistep vacuum process. We present a WO3/Ag/WO3 (WAW) multilayer transparent anode with solution-processed WO3 for polymer light-emitting diodes (PLEDs). This WAW multilayer not only has high transmittance and low resistance but also can be easily and rapidly fabricated. We devised a novel method to deposit a thin WO3 layer by a solution process in an air environment. A tungstic acid solution was prepared from an aqueous solution of Na2WO4 and then converted to WO3 nanoparticles (NPs) by a thermal treatment. Thin WO3 NP layers form WAW multilayer with a thermal-evaporated Ag layer, and they improve the transmittance of the WAW multilayer because of its high transmittance and refractive index. Moreover, the surface of the WO3 layer is homogeneous and flat with low roughness because of the WO3 NP generation from the tungstic acid solution without aggregation. We performed optical simulation and experiments, and the optimized WAW multilayer had a high transmittance of 85% with a sheet resistance of 4 Ω/sq. Finally, PLEDs based on the WAW multilayer anode achieved a maximum luminance of 35,550 cd/m2 at 8 V, and this result implies that the solution-processed WAW multilayer is appropriate for use as a transparent anode in PLEDs.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa