Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 922
Filtrar
1.
Cell ; 187(20): 5572-5586.e15, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39197451

RESUMO

DNA polymerases are important drug targets, and many structural studies have captured them in distinct conformations. However, a detailed understanding of the impact of polymerase conformational dynamics on drug resistance is lacking. We determined cryoelectron microscopy (cryo-EM) structures of DNA-bound herpes simplex virus polymerase holoenzyme in multiple conformations and interacting with antivirals in clinical use. These structures reveal how the catalytic subunit Pol and the processivity factor UL42 bind DNA to promote processive DNA synthesis. Unexpectedly, in the absence of an incoming nucleotide, we observed Pol in multiple conformations with the closed state sampled by the fingers domain. Drug-bound structures reveal how antivirals may selectively bind enzymes that more readily adopt the closed conformation. Molecular dynamics simulations and the cryo-EM structure of a drug-resistant mutant indicate that some resistance mutations modulate conformational dynamics rather than directly impacting drug binding, thus clarifying mechanisms that drive drug selectivity.


Assuntos
Antivirais , Microscopia Crioeletrônica , DNA Polimerase Dirigida por DNA , Farmacorresistência Viral , Simulação de Dinâmica Molecular , Proteínas Virais , Antivirais/farmacologia , Antivirais/química , Antivirais/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , DNA Polimerase Dirigida por DNA/química , Proteínas Virais/metabolismo , Proteínas Virais/química , Humanos , DNA Viral/metabolismo , Exodesoxirribonucleases
2.
Cell ; 185(7): 1157-1171.e22, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35259335

RESUMO

Enterococci are a part of human microbiota and a leading cause of multidrug resistant infections. Here, we identify a family of Enterococcus pore-forming toxins (Epxs) in E. faecalis, E. faecium, and E. hirae strains isolated across the globe. Structural studies reveal that Epxs form a branch of ß-barrel pore-forming toxins with a ß-barrel protrusion (designated the top domain) sitting atop the cap domain. Through a genome-wide CRISPR-Cas9 screen, we identify human leukocyte antigen class I (HLA-I) complex as a receptor for two members (Epx2 and Epx3), which preferentially recognize human HLA-I and homologous MHC-I of equine, bovine, and porcine, but not murine, origin. Interferon exposure, which stimulates MHC-I expression, sensitizes human cells and intestinal organoids to Epx2 and Epx3 toxicity. Co-culture with Epx2-harboring E. faecium damages human peripheral blood mononuclear cells and intestinal organoids, and this toxicity is neutralized by an Epx2 antibody, demonstrating the toxin-mediated virulence of Epx-carrying Enterococcus.


Assuntos
Toxinas Bacterianas/metabolismo , Enterococcus , Leucócitos Mononucleares , Fatores de Virulência/metabolismo , Animais , Bovinos , Enterococcus/metabolismo , Enterococcus/patogenicidade , Cavalos , Camundongos , Testes de Sensibilidade Microbiana , Suínos
3.
Cell ; 182(1): 226-244.e17, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32649875

RESUMO

Lung cancer in East Asia is characterized by a high percentage of never-smokers, early onset and predominant EGFR mutations. To illuminate the molecular phenotype of this demographically distinct disease, we performed a deep comprehensive proteogenomic study on a prospectively collected cohort in Taiwan, representing early stage, predominantly female, non-smoking lung adenocarcinoma. Integrated genomic, proteomic, and phosphoproteomic analysis delineated the demographically distinct molecular attributes and hallmarks of tumor progression. Mutational signature analysis revealed age- and gender-related mutagenesis mechanisms, characterized by high prevalence of APOBEC mutational signature in younger females and over-representation of environmental carcinogen-like mutational signatures in older females. A proteomics-informed classification distinguished the clinical characteristics of early stage patients with EGFR mutations. Furthermore, integrated protein network analysis revealed the cellular remodeling underpinning clinical trajectories and nominated candidate biomarkers for patient stratification and therapeutic intervention. This multi-omic molecular architecture may help develop strategies for management of early stage never-smoker lung adenocarcinoma.


Assuntos
Progressão da Doença , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteogenômica , Fumar/genética , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinógenos/toxicidade , Estudos de Coortes , Citosina Desaminase/metabolismo , Ásia Oriental , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Genoma Humano , Humanos , Metaloproteinases da Matriz/metabolismo , Mutação/genética , Análise de Componente Principal
4.
Nature ; 632(8025): 614-621, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39048821

RESUMO

Western equine encephalitis virus (WEEV) is an arthropod-borne virus (arbovirus) that frequently caused major outbreaks of encephalitis in humans and horses in the early twentieth century, but the frequency of outbreaks has since decreased markedly, and strains of this alphavirus isolated in the past two decades are less virulent in mammals than strains isolated in the 1930s and 1940s1-3. The basis for this phenotypic change in WEEV strains and coincident decrease in epizootic activity (known as viral submergence3) is unclear, as is the possibility of re-emergence of highly virulent strains. Here we identify protocadherin 10 (PCDH10) as a cellular receptor for WEEV. We show that multiple highly virulent ancestral WEEV strains isolated in the 1930s and 1940s, in addition to binding human PCDH10, could also bind very low-density lipoprotein receptor (VLDLR) and apolipoprotein E receptor 2 (ApoER2), which are recognized by another encephalitic alphavirus as receptors4. However, whereas most of the WEEV strains that we examined bind to PCDH10, a contemporary strain has lost the ability to recognize mammalian PCDH10 while retaining the ability to bind avian receptors, suggesting WEEV adaptation to a main reservoir host during enzootic circulation. PCDH10 supports WEEV E2-E1 glycoprotein-mediated infection of primary mouse cortical neurons, and administration of a soluble form of PCDH10 protects mice from lethal WEEV challenge. Our results have implications for the development of medical countermeasures and for risk assessment for re-emerging WEEV strains.


Assuntos
Vírus da Encefalite Equina do Oeste , Especificidade de Hospedeiro , Protocaderinas , Receptores Virais , Animais , Feminino , Humanos , Masculino , Camundongos , Aves/metabolismo , Aves/virologia , Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmissíveis Emergentes/virologia , Vírus da Encefalite Equina do Oeste/classificação , Vírus da Encefalite Equina do Oeste/metabolismo , Vírus da Encefalite Equina do Oeste/patogenicidade , Encefalomielite Equina/epidemiologia , Encefalomielite Equina/virologia , Proteínas Relacionadas a Receptor de LDL/metabolismo , Neurônios/metabolismo , Neurônios/virologia , Fenótipo , Protocaderinas/metabolismo , Receptores de LDL/metabolismo , Receptores de LDL/genética , Receptores Virais/metabolismo , Proteínas do Envelope Viral/metabolismo , Zoonoses Virais/epidemiologia , Zoonoses Virais/virologia
5.
Nature ; 602(7897): 475-480, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34929721

RESUMO

Alphaviruses, like many other arthropod-borne viruses, infect vertebrate species and insect vectors separated by hundreds of millions of years of evolutionary history. Entry into evolutionarily divergent host cells can be accomplished by recognition of different cellular receptors in different species, or by binding to receptors that are highly conserved across species. Although multiple alphavirus receptors have been described1-3, most are not shared among vertebrate and invertebrate hosts. Here we identify the very low-density lipoprotein receptor (VLDLR) as a receptor for the prototypic alphavirus Semliki forest virus. We show that the E2 and E1 glycoproteins (E2-E1) of Semliki forest virus, eastern equine encephalitis virus and Sindbis virus interact with the ligand-binding domains (LBDs) of VLDLR and apolipoprotein E receptor 2 (ApoER2), two closely related receptors. Ectopic expression of either protein facilitates cellular attachment, and internalization of virus-like particles, a VLDLR LBD-Fc fusion protein or a ligand-binding antagonist block Semliki forest virus E2-E1-mediated infection of human and mouse neurons in culture. The administration of a VLDLR LBD-Fc fusion protein has protective activity against rapidly fatal Semliki forest virus infection in mouse neonates. We further show that invertebrate receptor orthologues from mosquitoes and worms can serve as functional alphavirus receptors. We propose that the ability of some alphaviruses to infect a wide range of hosts is a result of their engagement of evolutionarily conserved lipoprotein receptors and contributes to their pathogenesis.


Assuntos
Mosquitos Vetores , Vírus da Floresta de Semliki , Animais , Proteínas Relacionadas a Receptor de LDL , Ligantes , Camundongos , Receptores de LDL , Vírus da Floresta de Semliki/metabolismo , Sindbis virus/fisiologia
6.
J Biol Chem ; 299(5): 104677, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37028765

RESUMO

The N6-methyladenosine (m6A) modification possesses new and essential roles in tumor initiation and progression by regulating mRNA biology. However, the role of aberrant m6A regulation in nasopharyngeal carcinoma (NPC) remains unclear. Here, through comprehensive analyses of NPC cohorts from the GEO database and our internal cohort, we identified that VIRMA, an m6A writer, is significantly upregulated in NPC and plays an essential role in tumorigenesis and metastasis of NPC, both in vitro and in vivo. High VIRMA expression served as a prognostic biomarker and was associated with poor outcomes in patients with NPC. Mechanistically, VIRMA mediated the m6A methylation of E2F7 3'-UTR, then IGF2BP2 bound, and maintained the stability of E2F7 mRNA. An integrative high-throughput sequencing approach revealed that E2F7 drives a unique transcriptome distinct from the classical E2F family in NPC, which functioned as an oncogenic transcriptional activator. E2F7 cooperated with CBFB-recruited RUNX1 in a non-canonical manner to transactivate ITGA2, ITGA5, and NTRK1, strengthening Akt signaling-induced tumor-promoting effect.


Assuntos
Carcinogênese , Fator de Transcrição E2F7 , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Proteínas de Ligação a RNA , Humanos , Carcinogênese/genética , Transformação Celular Neoplásica , Fator de Transcrição E2F7/genética , Fator de Transcrição E2F7/metabolismo , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/patologia , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patologia , RNA Mensageiro/genética , Proteínas de Ligação a RNA/metabolismo , Regulação para Cima
7.
J Biol Chem ; 299(6): 104814, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37178919

RESUMO

Epidermal growth factor receptor (EGFR)-mutant lung adenocarcinoma (LUAD) patients often respond to EGFR tyrosine kinase inhibitors (TKIs) initially but eventually develop resistance to TKIs. The switch of EGFR downstream signaling from TKI-sensitive to TKI-insensitive is a critical mechanism-driving resistance to TKIs. Identification of potential therapies to target EGFR effectively is a potential strategy to treat TKI-resistant LUADs. In this study, we developed a small molecule diarylheptanoid 35d, a curcumin derivative, that effectively suppressed EGFR protein expression, killed multiple TKI-resistant LUAD cells in vitro, and suppressed tumor growth of EGFR-mutant LUAD xenografts with variant TKI-resistant mechanisms including EGFR C797S mutations in vivo. Mechanically, 35d triggers heat shock protein 70-mediated lysosomal pathway through transcriptional activation of several components in the pathway, such as HSPA1B, to induce EGFR protein degradation. Interestingly, higher HSPA1B expression in LUAD tumors associated with longer survival of EGFR-mutant, TKI-treated patients, suggesting the role of HSPA1B on retarding TKI resistance and providing a rationale for combining 35d with EGFR TKIs. Our data showed that combination of 35d significantly inhibits tumor reprogression on osimertinib and prolongs mice survival. Overall, our results suggest 35d as a promising lead compound to suppress EGFR expression and provide important insights into the development of combination therapies for TKI-resistant LUADs, which could have translational potential for the treatment of this deadly disease.


Assuntos
Adenocarcinoma de Pulmão , Diarileptanoides , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares , Animais , Humanos , Camundongos , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Linhagem Celular Tumoral , Diarileptanoides/farmacologia , Receptores ErbB/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Lisossomos/metabolismo , Mutação , Inibidores de Proteínas Quinases/farmacologia
8.
Cancer Cell Int ; 24(1): 142, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643145

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is widely recognized for its unfavorable prognosis. Increasing evidence has revealed that LGALS3 has an essential function in initiating and developing several malignancies in humans. Nevertheless, thorough analysis of the expression profile, clinical prognosis, pathway prediction, and immune infiltration of LGALS3 has not been fully explored in HCC. METHODS: In this study, an initial pan-cancer analysis was conducted to investigate the expression and prognosis of LGALS3. Following a comprehensive analysis, which included expression analysis and correlation analysis, noncoding RNAs that contribute to the overexpression of LGALS3 were subsequently identified. This identification was further validated using HCC clinical tissue samples. TIMER2 and GEPIA2 were employed to examine the correlation between LGALS3 and HCP5 with immunological checkpoints, cell chemotaxis, and immune infiltration in HCC. The R program was applied to analyze the expression distribution of immune score in in HCC patients with high and low LGALS3 expression. The expression profiles of immune checkpoints were also analyzed. Use R to perform GSVA analysis in order to explore potential signaling pathways. RESULTS: First, we conducted pan-cancer analysis for LGALS3 expression level through an in-depth analysis of public databases and found that HCC has a high LGALS3 gene and protein expression level, which were then verified in clinical HCC specimens. Meanwhile, high LGALS3 gene expression is related to malignant progression and poor prognosis of HCC. Univariate and multivariate analyses confirmed that LGALS3 could serve as an independent prognostic marker for HCC. Next, by combining comprehensive analysis and validation on HCC clinical tissue samples, we hypothesize that the HCP5/hsa-miR-27b-3p axis could serve as the most promising LGALS3 regulation mechanism in HCC. KEGG and GO analyses highlighted that the LGALS3-related genes were involved in tumor immunity. Furthermore, we detected a significant positive association between LGALS3 and HCP5 with immunological checkpoints, cell chemotaxis, and immune infiltration. In addition, high LGALS3 expression groups had significantly higher immune cell scores and immune checkpoint expression levels. Finally, GSVA analysis was performed to predict potential signaling pathways linked to LGALS3 and HCP5 in immune evasion and metabolic reprogramming of HCC. CONCLUSIONS: Our findings indicated that the upregulation of LGALS3 via the HCP5/hsa-miR-27b-3p axis is associated with unfavorable prognosis and increased tumor immune infiltration in HCC.

9.
J Biomed Sci ; 31(1): 1, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38163894

RESUMO

BACKGROUND: As of 2020, hepatocellular carcinoma (HCC), a form of liver cancer, stood as the third most prominent contributor to global cancer-related mortality. Combining immune checkpoint inhibitors (ICI) with other therapies has shown promising results for treating unresectable HCC, offering new opportunities. Recombinant adeno-associated viral type 2 (AAV2) virotherapy has been approved for clinical use but it efficacy is stifled through systemic administration. On the other hand, iron oxide nanoparticles (ION) can be cleared via the liver and enhance macrophage polarization, promoting infiltration of CD8+ T cells and creating a more favorable tumor microenvironment for immunotherapy. METHODS: To enhance the efficacy of virotherapy and promote macrophage polarization towards the M1-type in the liver, ION-AAV2 were prepared through the coupling of ION-carboxyl and AAV2-amine using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC)/N-hydroxysulfosuccinimide (Sulfo-NHS). Efficacy after systemic delivery of ION-AAV2 in an orthotopic HCC model was evaluated. RESULTS: After 28 days, the tumor weight in mice treated with ION-AAV2 was significantly reduced by 0.56-fold compared to the control group. The ION-AAV2 treatment led to an approximate 1.80-fold increase in the level of tumor associated M1-type macrophages, while the number of M2-type macrophages was reduced by 0.88-fold. Moreover, a proinflammatory response increased the population of tumor-infiltrating CD8+ T cells in the ION-AAV2 group. This transformation converted cold tumors into hot tumors. CONCLUSIONS: Our findings suggest that the conjugation of ION with AAV2 could be utilized in virotherapy while simultaneously exploiting macrophage-modulating cancer immunotherapies to effectively suppress HCC growth.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Camundongos , Neoplasias Hepáticas/tratamento farmacológico , Carcinoma Hepatocelular/tratamento farmacológico , Linfócitos T CD8-Positivos , Microambiente Tumoral , Dependovirus , Linhagem Celular Tumoral
10.
EMBO Rep ; 23(8): e54265, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35766227

RESUMO

The aggressive nature and poor prognosis of lung cancer led us to explore the mechanisms driving disease progression. Utilizing our invasive cell-based model, we identified methylthioadenosine phosphorylase (MTAP) and confirmed its suppressive effects on tumorigenesis and metastasis. Patients with low MTAP expression display worse overall and progression-free survival. Mechanistically, accumulation of methylthioadenosine substrate in MTAP-deficient cells reduce the level of protein arginine methyltransferase 5 (PRMT5)-mediated symmetric dimethylarginine (sDMA) modification on proteins. We identify vimentin as a dimethyl-protein whose dimethylation levels drop in response to MTAP deficiency. The sDMA modification on vimentin reduces its protein abundance but trivially affects its filamentous structure. In MTAP-deficient cells, lower sDMA modification prevents ubiquitination-mediated vimentin degradation, thereby stabilizing vimentin and contributing to cell invasion. MTAP and PRMT5 negatively correlate with vimentin in lung cancer samples. Taken together, we propose a mechanism for metastasis involving vimentin post-translational regulation.


Assuntos
Neoplasias Pulmonares , Purina-Núcleosídeo Fosforilase , Humanos , Neoplasias Pulmonares/genética , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Purina-Núcleosídeo Fosforilase/metabolismo , Vimentina/genética
11.
J Chem Phys ; 160(14)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38591686

RESUMO

Metal-Organic Polymers (MOPs) have attracted growing attention for lithium-ion battery (LIB) applications due to their merits in orderly ionic transportation and robust structure stability in electrochemical reactions. However, they suffer from poor electronic conductivity. In this work, we apply first-principles density functional theory to explore the potential of three one-dimensional (1D) electrically conductive C6H2S4TM (TM = Fe, Co, and Ni) MOPs with the π-d conjugated coordination as anode materials for Li+ ions storage. Our theoretical results reveal that these 1D MOPs possess a superior theoretical capacity of over 748 mA h g-1. In particular, the 1D C6H2S4Ni MOP shows an exceptional theoretical specific capacity of 1110 mA h g-1 based on the three-electron transferring reaction, which significantly outperforms the traditional graphite-based anode material in LIBs. Moreover, the resonant charge transfer between Ni metal and ligand within the 1D C6H2S4Ni MOP reduces the diffusion energy barrier of the Li atoms when they migrate on the surface of the MOP. The ultrahigh theoretical specific capacity of the C6H2S4Ni MOP predicts that it can be a promising anode material for LIBs.

12.
J Nanobiotechnology ; 22(1): 169, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609998

RESUMO

INTRODUCTION: Angiotensin-converting enzyme 2 (ACE2) and AXL tyrosine kinase receptor are known to be involved in the SARS-CoV-2 entry of the host cell. Therefore, targeting ACE2 and AXL should be an effective strategy to inhibit virus entry into cells. However, developing agents that can simultaneously target ACE2 and AXL remains a formidable task. The natural compound quercetin has been shown to inhibit AXL expression. MATERIALS AND METHODS: In this study, we employed PLGA nanoparticles to prepare nanoparticles encapsulated with quercetin, coated with ACE2-containing cell membranes, or encapsulated with quercetin and then coated with ACE-2-containing cell membranes. These nanoparticles were tested for their abilities to neutralize or inhibit viral infection. RESULTS: Our data showed that nanoparticles encapsulated with quercetin and then coated with ACE2-containing cell membrane inhibited the expression of AXL without causing cytotoxic activity. Nanoparticles incorporated with both quercetin and ACE2-containing cell membrane were found to be able to neutralize pseudo virus infection and were more effective than free quercetin and nanoparticles encapsulated with quercetin at inhibition of pseudo virus and SARS-CoV-2 infection. CONCLUSIONS: We have shown that the biomimetic nanoparticles incorporated with both ACE-2 membrane and quercetin showed the most antiviral activity and may be further explored for clinical application.


Assuntos
COVID-19 , Nanopartículas , Humanos , Enzima de Conversão de Angiotensina 2 , Quercetina/farmacologia , Quercetina/uso terapêutico , SARS-CoV-2
13.
BMC Public Health ; 24(1): 533, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378488

RESUMO

BACKGROUND: Previous studies of singletons evaluating prenatal phthalate exposure and early neurodevelopment reported mixed results and the associations could be biased by parental, obstetrical, and genetic factors. METHODS: A co-twin control design was employed to test whether prenatal phthalate exposure was associated with children's neurocognitive development. We collected information from 97 mother-twin pairs enrolled in the Wuhan Twin Birth Cohort between March 2016 and October 2018. Fourteen phthalate metabolites were measured in maternal urine collected at each trimester. Neurodevelopmental differences in twins at the age of two were examined as the outcome of interest. Multiple informant model was used to examine the covariate-adjusted associations of prenatal phthalate exposure with mental development index (MDI) and psychomotor development index (PDI) scores assessed at 2 years of age based on Bayley Scales of Infant Development (Second Edition). This model also helps to identify the exposure window of susceptibility. RESULTS: Maternal urinary levels of mono-2-ethyl-5-oxohexyl phthalate (MEOHP) (ß = 1.91, 95% CI: 0.43, 3.39), mono (2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) (ß = 1.56, 95% CI: 0.33, 2.79), and the sum of di-(2-ethylhexyl) phthalate metabolites (∑DEHP) (ß = 1.85, 95% CI: 0.39, 3.31) during the first trimester showed the strongest and significant positive associations with intra-twin MDI difference. When stratified with twin chorionicity, the positive associations of monoethyl phthalate (MEP), monoisobutyl phthalate (MiBP), mono-n-butyl phthalate (MBP), monobenzyl phthalate (MBzP), individual DEHP metabolites, and ∑DEHP exposure during pregnancy with intra-twin neurodevelopmental differences were more significant in monochorionic diamniotic (MCDA) twins than those in dichorionic diamniotic (DCDA) twins. CONCLUSIONS: Neurodevelopmental differences in MCDA twins were strongly associated with prenatal phthalate exposure. Our findings warrant further confirmation in longitudinal studies with larger sample sizes.


Assuntos
Poluentes Ambientais , Ácidos Ftálicos , Criança , Lactente , Gravidez , Feminino , Humanos , Ácidos Ftálicos/toxicidade , Estudos Longitudinais , Trimestres da Gravidez , Primeiro Trimestre da Gravidez , Mães , Exposição Ambiental , Poluentes Ambientais/toxicidade , Exposição Materna/efeitos adversos
14.
Ecotoxicol Environ Saf ; 280: 116525, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38852468

RESUMO

Air pollution is widely acknowledged as a significant risk factor for human health, especially reproductive health. Nevertheless, many studies have disregarded the potentially mixed effects of air pollutants on reproductive outcomes. We performed a retrospective cohort study involving 8048 women with 9445 cycles undergoing In Vitro Fertilization (IVF) and Intracytoplasmic Sperm Injection (ICSI) in China, from 2017 to 2021. A land-use random forest model was applied to estimate daily residential exposure to air pollutants, including sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), ozone (O3), and fine particulate matter (PM2.5). Individual and joint associations between air pollutants and oocyte-related outcomes of ART were evaluated. In 90 days prior to oocyte pick-up to oocyte pick-up (period A), NO2, O3 and CO was negatively associated with total oocyte yield. In the 90 days prior to oocyte pick-up to start of gonadotropin medication (Gn start, period B), there was a negative dose-dependent association of exposure to five air pollutants with total oocyte yield and mature oocyte yield. In Qgcomp analysis, increasing the multiple air pollutants mixtures by one quartile was related to reducing the number of oocyte pick-ups by -2.00 % (95 %CI: -2.78 %, -1.22 %) in period A, -2.62 % (95 %CI: -3.40 %, -1.84 %) in period B, and -0.98 % (95 %CI: -1.75 %, -0.21 %) in period C. During period B, a 1-unit increase in the WQS index of multiple air pollutants exposure was associated with fewer number of total oocyte (-1.27 %, 95 %CI: -2.16 %, -0.36 %) and mature oocyte (-1.42 %, 95 %CI: -2.41 %, -0.43 %). O3 and NO2 were major contributors with adverse effects on the mixed associations. Additionally, period B appears to be the susceptible window. Our study implies that exposure to air pollution adversely affects oocyte-related outcomes, which raises concerns about the potential adverse impact of air pollution on women's reproductive health.


Assuntos
Poluentes Atmosféricos , Oócitos , Feminino , Humanos , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Estudos Retrospectivos , Oócitos/efeitos dos fármacos , Adulto , China , Técnicas de Reprodução Assistida , Poluição do Ar/efeitos adversos , Ozônio , Material Particulado/toxicidade , Material Particulado/análise , Exposição Ambiental/efeitos adversos , Fertilização in vitro , Estudos de Coortes , Dióxido de Nitrogênio/análise
15.
Sensors (Basel) ; 24(14)2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39066156

RESUMO

Semi-supervised graph convolutional networks (SSGCNs) have been proven to be effective in hyperspectral image classification (HSIC). However, limited training data and spectral uncertainty restrict the classification performance, and the computational demands of a graph convolution network (GCN) present challenges for real-time applications. To overcome these issues, a dual-branch fusion of a GCN and convolutional neural network (DFGCN) is proposed for HSIC tasks. The GCN branch uses an adaptive multi-scale superpixel segmentation method to build fusion adjacency matrices at various scales, which improves the graph convolution efficiency and node representations. Additionally, a spectral feature enhancement module (SFEM) enhances the transmission of crucial channel information between the two graph convolutions. Meanwhile, the CNN branch uses a convolutional network with an attention mechanism to focus on detailed features of local areas. By combining the multi-scale superpixel features from the GCN branch and the local pixel features from the CNN branch, this method leverages complementary features to fully learn rich spatial-spectral information. Our experimental results demonstrate that the proposed method outperforms existing advanced approaches in terms of classification efficiency and accuracy across three benchmark data sets.

16.
Nano Lett ; 23(24): 11630-11637, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38038680

RESUMO

Phase contrast imaging techniques enable the visualization of disparities in the refractive index among various materials. However, these techniques usually come with a cost: the need for bulky, inflexible, and complicated configurations. Here, we propose and experimentally demonstrate an ultracompact meta-microscope, a novel imaging platform designed to accomplish both optical and digital phase contrast imaging. The optical phase contrast imaging system is composed of a pair of metalenses and an intermediate spiral phase metasurface located at the Fourier plane. The performance of the system in generating edge-enhanced images is validated by imaging a variety of human cells, including lung cell lines BEAS-2B, CLY1, and H1299 and other types. Additionally, we integrate the ResNet deep learning model into the meta-microscope to transform bright-field images into edge-enhanced images with high contrast accuracy. This technology promises to aid in the development of innovative miniature optical systems for biomedical and clinical applications.


Assuntos
Microscopia , Dispositivos Ópticos , Humanos , Microscopia/métodos , Microscopia de Contraste de Fase/métodos , Imagem Óptica
17.
J Environ Manage ; 370: 122637, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39326072

RESUMO

Sustainable Cr(VI) reduction by microbial fuel cell (MFC) is a major challenge due to the electrode passivation and available electron donors. In this study, the chromate removal across a period of more than three months in a membrane-less TPBC-MFC with solid watermelon rind (SWMR) as electron donors was investigated. The TPBC benefited the Cr(VI) reduction and voltage output owing to the enhanced mass transfer. The average Cr(VI) removal efficiency (RE) of 97%, effluent COD of 80 mg/L and voltage output of 130 mV were achieved during the long-term operation on the TPBC-MFC. The SEM-EDS analysis showed that all biofilms were predominated by rod- and coccus-shaped bacteria and the Cr(VI) reduction was mainly carried out by the S-cathode. The XPS, XRD and FT-IR analysis revealed that the major product of cathodic Cr(VI) reduction was a Cr(III) precipitate in the form of Cr(OH)3. Microbial community structure disclosed that fermentation microorganisms (e.g. Anaeroarcus) and electroactive bacteria (e.g. Porphyromonadaceae) jointly responsible for SWMR degradation and electricity generation were dominant at the anode, while the chromate-associated microorganisms (e.g. Comamonadaceae and Cloacibacterium) dominated at the cathode. The biofilms adsorbing Cr(OH)3 precipitates fell off from the cathode periodically to avoid the passivation. Overall, our study suggests a really sustainable approach with which a goal of simultaneously reusing watermelon rind, reducing Cr(VI) and producing electricity was attained perfectly.

18.
Artigo em Inglês | MEDLINE | ID: mdl-39254609

RESUMO

INTRODUCTION: This study aimed to evaluate the midpalatal suture (MPS) maturation stages using the cone-beam computed tomography classification method in Chinese children aged 5-10 years, adolescents aged 11-15 years, and postadolescents aged 16-20 years and identify a correlation between maturation stage and age and sex. METHODS: Axial sections of tomographic images from 717 participants (369 female and 348 male participants) aged 5-20 years were used to classify the maturation stage of the MPS (stages A, B, C, D, and E). Kappa statistics were used to evaluate the measurement error. The chi-square test was applied to analyze the differences in the distribution of MPS stages by age group and by sex among all participants, as well as the adolescent group. The Fisher exact test was employed to assess the differences in MPS stage distribution by sex among children aged 5-10 years and among the postadolescent group. The Mann-Whitney U test was used to assess the potential variance in age distribution between stages C and D. RESULTS: The most prevalent maturation stage was stage C (40.3%). Of the total population, 69.4% had MPS in stages A, B, or C. A significant difference in age distribution was observed between stage C and stage D (P <0.001). The distribution of the MPS maturation stage significantly varied by age group (P <0.001) and sex (P <0.001). CONCLUSIONS: The distribution of participants in advanced maturation stages increases with age. Female patients generally experience earlier MPS maturation than male patients, particularly between the ages of 11-20 years.

19.
Angew Chem Int Ed Engl ; : e202417778, 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39420081

RESUMO

Due to the seamless interfaces between solid polymer electrolytes (SPEs) and electrode materials, SPEs-based all-solid-state sodium-ion batteries (ASSSIBs) are considered promising energy storage systems. However, the sluggish Na+ transport and uncontrollable Na dendrite propagation still hinder the practical application of SPEs-based ASSSIBs. Herein, Ca-doped CeO2 (Ca-CeO2) nanotube framework is synthesized and integrated with poly (ethylene oxide) methyl ether acrylate-perfluoropolyether copolymer (PEOA-PFPE), resulting in multifunctional solid nanocomposite electrolytes (namely SNEs, i.e., PEOA-PFPE/Ca-CeO2). Our investigations demonstrate that the fluorous effect incurred by the fluorine-containing PEOA-PFPE and the oxygen vacancy effect induced by the Ca-CeO2 framework could synergistically promote the dissociation of sodium salt, ultimately enhancing the Na+ mobility in SNEs. Besides, the resultant SNEs construct rapid Na+ transport channels and homogenize the Na deposition in SNEs/Na interface, which effectively prevents the Na dendrite growth. Furthermore, the assembled carbon-coated sodium vanadium phosphate (NVP@C)||PEOA-PFPE/Ca-CeO2||Na coin cell delivers impressive rate capability of 97.9 mA h g-1 at 2 C and outstanding cycling stability with capacity retention of 84.3% after 300 cycles at 1 C. This work illustrates that constructing multifunctional SNEs via incorporating functional inorganic frameworks into fluorine-containing SPEs could be a promising strategy for the commercialization of robust and high-performance ASSSIBs.

20.
J Virol ; 96(23): e0087922, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36377874

RESUMO

The glycan loop of Zika virus (ZIKV) envelope protein (E) contains the glycosylation site and has been well documented to be important for viral pathogenesis and transmission. In the present study, we report that deletions in the E glycan loop, which were recorded in African ZIKV strains previously, have re-emerged in their contemporary Asian lineages. Here, we generated recombinant ZIKV containing specific deletions in the E glycan loop by reverse genetics. Extensive in vitro and in vivo characterization of these deletion mutants demonstrated an attenuated phenotype in an adult A129 mouse model and reduced oral infections in mosquitoes. Surprisingly, these glycan loop deletion mutants exhibited an enhanced neurovirulence phenotype, and resulted in a more severe microcephalic brain in neonatal mouse models. Crystal structures of the ZIKV E protein and a deletion mutant at 2.5 and 2.6 Å, respectively, revealed that deletion of the glycan loop induces encephalitic flavivirus-like conformational alterations, including the appearance of perforations on the surface and a clear change in the topology of the loops. Overall, our results demonstrate that the E glycan loop deletions represent neonatal mouse neurovirulence markers of ZIKV. IMPORTANCE Zika virus (ZIKV) has been identified as a cause of microcephaly and acquired evolutionary mutations since its discovery. Previously deletions in the E glycan loop were recorded in African ZIKV strains, which have re-emerged in the contemporary Asian lineages recently. The glycan loop deletion mutants are not glycosylated, which are attenuated in adult A129 mouse model and reduced oral infections in mosquitoes. More importantly, the glycan loop deletion mutants induce an encephalitic flavivirus-like conformational alteration in the E homodimer, resulting in a significant enhancement of neonatal mouse neurovirulence. This study underscores the critical role of glycan loop deletion mutants in ZIKV pathogenesis, highlighting a need for global virological surveillance for such ZIKV variants.


Assuntos
Proteínas do Envelope Viral , Infecção por Zika virus , Zika virus , Animais , Camundongos , Modelos Animais de Doenças , Polissacarídeos/química , Proteínas do Envelope Viral/genética , Virulência , Replicação Viral/genética , Zika virus/genética , Zika virus/patogenicidade , Infecção por Zika virus/virologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa