Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Anim Biosci ; 37(5): 852-861, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38575134

RESUMO

OBJECTIVE: The present study aimed to investigate the effect of ß-nicotinamide mononucleotide (NMN) supplementation on ram sperm quality during storage at 4°C in vitro. METHODS: Tris-citric acid-glucose solution containing different doses of NMN (0, 30, 60, 90, and 120 µM) was used to dilute semen collected from rams and it was stored at 4°C. Sperm motility, plasma membrane integrity as well as acrosome integrity were evaluated at 0, 24, and 48 h time points after storage at 4°C. In addition, sperm mitochondrial activity, lipid peroxidation (LPO), malondialdehyde (MDA) content, reactive oxygen species (ROS) content, glutathione (GSH) content, superoxide dismutase (SOD) activity, and apoptosis were measured at 48 h time point after storage at 4°C. RESULTS: Results demonstrate that the values obtained for sperm motility, acrosome integrity, and plasma membrane integrity in the NMN treatments were significantly higher than control (p<0.05). The addition of 60 µM NMN significantly improved ram sperm mitochondrial activity and reduced LPO, MDA content, and ROS content compared to control (p<0.05). Interestingly, sperm GSH content and SOD activity for the 60 µM NMN treatment were much higher than those observed for control. NMN treatment also decreased the level of Cleaved-Caspase 3, Cleaved-Caspase 9, and Bax while increasing Bcl-2 level in sperm at 48 h time point after storage at 4°C. CONCLUSION: Ram sperm quality can be maintained during storage at 4°C with the addition of NMN at 60 µM to the semen extender. NMN also reduces oxidative stress and apoptosis. Overall, these findings suggest that NMN is efficient in improving the viability of ram sperm during storage at 4°C in vitro.

2.
Antioxidants (Basel) ; 13(1)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38247528

RESUMO

Sperm motility is an important factor in the migration of sperm from the uterus to the oviduct. During sperm preservation in vitro, sperm generates excessive ROS that damages its function. This study aims to investigate whether the addition of pyrroloquinoline quinone (PQQ) to the diluted medium could improve chilled ram sperm quality, and then elucidates the mechanism. Ram semen was diluted with Tris-citric acid-glucose (TCG) medium containing different doses of PQQ (0 nM, 10 nM, 100 nM, 1000 nM, 10,000 nM), and stored at 4 °C. Sperm motility patterns, plasma membrane integrity, acrosome integrity, mitochondrial membrane potential, reactive oxygen species (ROS) levels, malondialdehyde (MDA) levels, superoxide dismutase (SOD) activity, and ATP levels were measured after preservation. Furthermore, the expressions of NADH dehydrogenase 1 (MT-ND1) and NADH dehydrogenase 6 (MT-ND6) in sperm were also detected by western blotting. In addition, sperm capacitation and the ability of sperm to bind to the zona pellucina were also evaluated. It was observed that the addition of PQQ significantly (p < 0.05) improved ram sperm motility, membrane integrity, and acrosome integrity during preservation. The percentage of sperm with high mitochondrial membrane potential in the PQQ treatment group was much higher than that in the control. In addition, supplementation of PQQ also decreased the sperm MDA and ROS levels, while increasing ATP levels. Interestingly, the levels of MT-ND1 and MT-ND6 protein in sperm treated with PQQ were also higher than that of the control. Furthermore, the addition of 100 nM PQQ to the medium decreased ROS damage in MT-ND1 and MT-ND6 proteins. The addition of 100 nM PQQ significantly (p < 0.05) increased protein tyrosine phosphorylation in ram sperm after induced capacitation. Furthermore, the value of the sperm-zona pellucida binding capacity in the 100 nM PQQ treatment group was also much higher than that of the control. Overall, during chilled ram- sperm preservation, PQQ protected ram sperm quality by quenching the ROS levels to reduce ROS damage and maintain sperm mitochondrial function, and preserved the sperm's high ability of fertilization.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa