Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neurocomputing (Amst) ; 544: None, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37528990

RESUMO

Accurate segmentation of brain tumors from medical images is important for diagnosis and treatment planning, and it often requires multi-modal or contrast-enhanced images. However, in practice some modalities of a patient may be absent. Synthesizing the missing modality has a potential for filling this gap and achieving high segmentation performance. Existing methods often treat the synthesis and segmentation tasks separately or consider them jointly but without effective regularization of the complex joint model, leading to limited performance. We propose a novel brain Tumor Image Synthesis and Segmentation network (TISS-Net) that obtains the synthesized target modality and segmentation of brain tumors end-to-end with high performance. First, we propose a dual-task-regularized generator that simultaneously obtains a synthesized target modality and a coarse segmentation, which leverages a tumor-aware synthesis loss with perceptibility regularization to minimize the high-level semantic domain gap between synthesized and real target modalities. Based on the synthesized image and the coarse segmentation, we further propose a dual-task segmentor that predicts a refined segmentation and error in the coarse segmentation simultaneously, where a consistency between these two predictions is introduced for regularization. Our TISS-Net was validated with two applications: synthesizing FLAIR images for whole glioma segmentation, and synthesizing contrast-enhanced T1 images for Vestibular Schwannoma segmentation. Experimental results showed that our TISS-Net largely improved the segmentation accuracy compared with direct segmentation from the available modalities, and it outperformed state-of-the-art image synthesis-based segmentation methods.

2.
Int J Comput Assist Radiol Surg ; 19(2): 199-208, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37610603

RESUMO

PURPOSE: To achieve effective robot-assisted laparoscopic prostatectomy, the integration of transrectal ultrasound (TRUS) imaging system which is the most widely used imaging modality in prostate imaging is essential. However, manual manipulation of the ultrasound transducer during the procedure will significantly interfere with the surgery. Therefore, we propose an image co-registration algorithm based on a photoacoustic marker (PM) method, where the ultrasound/photoacoustic (US/PA) images can be registered to the endoscopic camera images to ultimately enable the TRUS transducer to automatically track the surgical instrument. METHODS: An optimization-based algorithm is proposed to co-register the images from the two different imaging modalities. The principle of light propagation and an uncertainty in PM detection were assumed in this algorithm to improve the stability and accuracy of the algorithm. The algorithm is validated using the previously developed US/PA image-guided system with a da Vinci surgical robot. RESULTS: The target-registration-error (TRE) is measured to evaluate the proposed algorithm. In both simulation and experimental demonstration, the proposed algorithm achieved a sub-centimeter accuracy which is acceptable in practical clinics (i.e., 1.15 ± 0.29 mm from the experimental evaluation). The result is also comparable with our previous approach (i.e., 1.05 ± 0.37 mm), and the proposed method can be implemented with a normal white light stereo camera and does not require highly accurate localization of the PM. CONCLUSION: The proposed frame registration algorithm enabled a simple yet efficient integration of commercial US/PA imaging system into laparoscopic surgical setting by leveraging the characteristic properties of acoustic wave propagation and laser excitation, contributing to automated US/PA image-guided surgical intervention applications.


Assuntos
Laparoscopia , Neoplasias da Próstata , Robótica , Cirurgia Assistida por Computador , Masculino , Humanos , Imageamento Tridimensional/métodos , Ultrassonografia/métodos , Cirurgia Assistida por Computador/métodos , Algoritmos , Prostatectomia/métodos , Neoplasias da Próstata/cirurgia
3.
Biomed Opt Express ; 14(11): 6016-6030, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38021122

RESUMO

Real-time transrectal ultrasound (TRUS) image guidance during robot-assisted laparoscopic radical prostatectomy has the potential to enhance surgery outcomes. Whether conventional or photoacoustic TRUS is used, the robotic system and the TRUS must be registered to each other. Accurate registration can be performed using photoacoustic (PA markers). However, this requires a manual search by an assistant [IEEE Robot. Autom. Lett8, 1287 (2023).10.1109/LRA.2022.3191788]. This paper introduces the first automatic search for PA markers using a transrectal ultrasound robot. This effectively reduces the challenges associated with the da Vinci-TRUS registration. This paper investigated the performance of three search algorithms in simulation and experiment: Weighted Average (WA), Golden Section Search (GSS), and Ternary Search (TS). For validation, a surgical prostate scenario was mimicked and various ex vivo tissues were tested. As a result, the WA algorithm can achieve 0.53°±0.30° average error after 9 data acquisitions, while the TS and GSS algorithm can achieve 0.29∘±0.31∘ and 0.48°±0.32° average errors after 28 data acquisitions.

4.
Comput Methods Programs Biomed ; 231: 107398, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36773591

RESUMO

BACKGROUND AND OBJECTIVE: Open-source deep learning toolkits are one of the driving forces for developing medical image segmentation models that are essential for computer-assisted diagnosis and treatment procedures. Existing toolkits mainly focus on fully supervised segmentation that assumes full and accurate pixel-level annotations are available. Such annotations are time-consuming and difficult to acquire for segmentation tasks, which makes learning from imperfect labels highly desired for reducing the annotation cost. We aim to develop a new deep learning toolkit to support annotation-efficient learning for medical image segmentation, which can accelerate and simplify the development of deep learning models with limited annotation budget, e.g., learning from partial, sparse or noisy annotations. METHODS: Our proposed toolkit named PyMIC is a modular deep learning library for medical image segmentation tasks. In addition to basic components that support development of high-performance models for fully supervised segmentation, it contains several advanced components that are tailored for learning from imperfect annotations, such as loading annotated and unannounced images, loss functions for unannotated, partially or inaccurately annotated images, and training procedures for co-learning between multiple networks, etc. PyMIC is built on the PyTorch framework and supports development of semi-supervised, weakly supervised and noise-robust learning methods for medical image segmentation. RESULTS: We present several illustrative medical image segmentation tasks based on PyMIC: (1) Achieving competitive performance on fully supervised learning; (2) Semi-supervised cardiac structure segmentation with only 10% training images annotated; (3) Weakly supervised segmentation using scribble annotations; and (4) Learning from noisy labels for chest radiograph segmentation. CONCLUSIONS: The PyMIC toolkit is easy to use and facilitates efficient development of medical image segmentation models with imperfect annotations. It is modular and flexible, which enables researchers to develop high-performance models with low annotation cost. The source code is available at:https://github.com/HiLab-git/PyMIC.


Assuntos
Aprendizado Profundo , Diagnóstico por Computador , Coração , Software , Processamento de Imagem Assistida por Computador , Aprendizado de Máquina Supervisionado
5.
IEEE J Biomed Health Inform ; 26(8): 3673-3684, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35522641

RESUMO

Automatic segmentation of COVID-19 pneumonia lesions is critical for quantitative measurement for diagnosis and treatment management. For this task, deep learning is the state-of-the-art method while requires a large set of accurately annotated images for training, which is difficult to obtain due to limited access to experts and the time-consuming annotation process. To address this problem, we aim to train the segmentation network from imperfect annotations, where the training set consists of a small clean set of accurately annotated images by experts and a large noisy set of inaccurate annotations by non-experts. To avoid the labels with different qualities corrupting the segmentation model, we propose a new approach to train segmentation networks to deal with noisy labels. We introduce a dual-branch network to separately learn from the accurate and noisy annotations. To fully exploit the imperfect annotations as well as suppressing the noise, we design a Divergence-Aware Selective Training (DAST) strategy, where a divergence-aware noisiness score is used to identify severely noisy annotations and slightly noisy annotations. For severely noisy samples we use an regularization through dual-branch consistency between predictions from the two branches. We also refine slightly noisy samples and use them as supplementary data for the clean branch to avoid overfitting. Experimental results show that our method achieves a higher performance than standard training process for COVID-19 pneumonia lesion segmentation when learning from imperfect labels, and our framework outperforms the state-of-the-art noise-tolerate methods significantly with various clean label percentages.


Assuntos
COVID-19 , COVID-19/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa