Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 21(8): 3680-3689, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33596656

RESUMO

Efficient endosomal escape is the most essential but challenging issue for siRNA drug development. Herein, a series of quaternary ammonium-based amphiphilic triblock polymers harnessing an elaborately tailored pH-sensitive hydrophobic core were synthesized and screened. Upon incubating in an endosomal pH environment (pH 6.5-6.8), mPEG45-P(DPA50-co-DMAEMA56)-PT53 (PDDT, the optimized polymer) nanomicelles (PDDT-Ms) and PDDT-Ms/siRNA polyplexes rapidly disassembled, leading to promoted cytosolic release of internalized siRNA and enhanced silencing activity evident from comprehensive analysis of the colocalization and gene silencing using a lysosomotropic agent (chloroquine) and an endosomal trafficking inhibitor (bafilomycin A1). In addition, PDDT-Ms/siPLK1 dramatically repressed tumor growth in both HepG2-xenograft and highly malignant patient-derived xenograft models. PDDT-Ms-armed siPD-L1 efficiently blocked the interaction of PD-L1 and PD-1 and restored immunological surveillance in CT-26-xenograft murine model. PDDT-Ms/siRNA exhibited ideal safety profiles in these assays. This study provides guidelines for rational design and optimization of block polymers for efficient endosomal escape of internalized siRNA and cancer therapy.


Assuntos
Endossomos , Polímeros , Animais , Linhagem Celular Tumoral , Inativação Gênica , Humanos , Interações Hidrofóbicas e Hidrofílicas , Camundongos , RNA Interferente Pequeno/genética
2.
Plant Cell Rep ; 35(11): 2309-2323, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27541276

RESUMO

KEY MESSAGE: Wheat bHLH family gene TabHLH1 is responsive to drought and salt stresses, and it acts as one crucial regulator in mediating tolerance to aforementioned stresses largely through an ABA-associated pathway. Osmotic stresses are adverse factors for plant growth and crop productivity. In this study, we characterized TabHLH1, a gene encoding wheat bHLH-type transcription factor (TF) protein, in mediating plant adaptation to osmotic stresses. TabHLH1 protein contains a conserved basic-helix-loop-helix (bHLH) domain shared by its plant counterparts. Upon PEG-simulated drought stress, salt stress, and exogenous abscisic acid (ABA), the TabHLH1 transcripts in roots and leaves were induced. Under PEG-simulated drought stress and salt stress treatments, the tobacco seedlings with TabHLH1 overexpression exhibited improved growth and osmotic stress-associated traits, showing increased biomass and reduced leaf water loss rate (WLR) relative to wild type (WT). The transgenic lines also possessed promoted stomata closure under drought stress, salt stress, and exogenous ABA and increased proline and soluble sugar contents and reduced hydrogen peroxide (H2O2) amount under osmotic stress conditions, indicating that TabHLH1-mediated osmolyte accumulation and cellular ROS homeostasis contributed to the drought stress and salt stress tolerance. NtPYL12 and NtSAPK2;1, the genes encoding ABA receptor and SnRK2 family kinase, respectively, showed up-regulated expression in lines overexpressing TabHLH1 under osmotic stress and exogenous ABA conditions; overexpression of them conferred plants modified stomata movement, leaf WLR, and growth feature under drought and high salinity, suggesting that these ABA-signaling genes are mediated by wheat TabHLH1 gene and involved in regulating plant responses to simulated drought and salt stresses. Our investigation indicates that the TabHLH1 gene plays critical roles in plant tolerance to osmotic stresses largely through an ABA-dependent pathway.


Assuntos
Ácido Abscísico/metabolismo , Adaptação Fisiológica/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Genes de Plantas , Pressão Osmótica/fisiologia , Estresse Fisiológico/genética , Triticum/genética , Triticum/fisiologia , Ácido Abscísico/farmacologia , Adaptação Fisiológica/efeitos dos fármacos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Biomassa , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/genética , Estômatos de Plantas/fisiologia , Transpiração Vegetal/efeitos dos fármacos , Transpiração Vegetal/genética , Plantas Geneticamente Modificadas , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Estresse Fisiológico/efeitos dos fármacos , Nicotiana/genética , Triticum/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética , Água/metabolismo
3.
Biomater Sci ; 12(7): 1716-1725, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38344762

RESUMO

Emerging CRISPR-Cas9 systems can rebuild DNA sequences in the genome in a spatiotemporal manner, offering a magic tool for biological research, drug discovery, and gene therapy. However, low delivery efficiency remains a major roadblock hampering the wide application of CRISPR-Cas9 gene editing talent. Herein, ionic liquid-conjugated polymers (IL-CPs) are explored as efficient platforms for CRISPR-Cas9 plasmid delivery and in vivo genome editing-based tumor therapy. Via molecular screening of IL-CPs, IL-CPs integrated with fluorination monomers (PBF) can encapsulate plasmids into hybrid nanoparticles and achieve over 90% delivery efficiency in various cells regardless of serum interference. In vitro and in vivo experiments demonstrate that PBF can mediate Cas9/PLK1 plasmids for intracellular delivery and therapeutic genome editing in tumor, achieving efficient tumor suppression. This work provides a new tool for safe and efficient CRISPR-Cas9 delivery and therapeutic genome editing, thus opening a new avenue for the development of ionic liquid polymeric vectors for genome editing and therapy.


Assuntos
Edição de Genes , Líquidos Iônicos , Sistemas CRISPR-Cas/genética , Polímeros , Plasmídeos/genética
4.
Adv Sci (Weinh) ; 9(22): e2201135, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35665496

RESUMO

Exosomes derived from natural killer (NK) cells (NEO) constitute promising antineoplastic nano-biologics because of their versatile functions in immune regulation. However, a significant augment of their immunomodulatory capability is an essential need to achieve clinically meaningful treatment outcomes. Light-activatable silencing NK-derived exosomes (LASNEO) are orchestrated by engineering the NEO with hydrophilic small interfering RNA (siRNA) and hydrophobic photosensitizer Ce6. Profiling of genes involved in apoptosis pathway with Western blot and RNA-seq in cells receiving NEO treatment reveals that NEO elicits effective NK cell-like cytotoxicity toward tumor cells. Meanwhile, reactive oxygen species (ROS) generation upon laser irradiation not only triggers substantial photodynamic therapy effect but also boosts M1 tumor-associated macrophages polarization and DC maturation in the tumor microenvironment (TME). In addition, ROS also accelerates the cellular entry and endosomal escape of siRNA in TME. Finally, siRNAs targeting PLK1 or PD-L1 induce robust gene silencing in cancer cells, and downregulation of PD-L1 restores the immunological surveillance of T cells in TME. Therefore, the proposed LASNEO exhibit excellent antitumor effects by conscripting multiple types of immune cells. Considering that its manufacture is quite simple and controllable, LASNEO show compelling potential for clinical translational application.


Assuntos
Exossomos , Neoplasias , Antígeno B7-H1/metabolismo , Exossomos/metabolismo , Humanos , Células Matadoras Naturais , Neoplasias/terapia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Microambiente Tumoral
5.
Bioact Mater ; 9: 590-601, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34853819

RESUMO

CRISPR/Cas9-based gene editing has emerged as a powerful biotechnological tool, that relies on Cas9 protein and single guided RNA (sgRNA) to edit target DNA. However, the lack of safe and efficient delivery carrier is one of the crucial factors restricting its clinical transformation. Here, we report an ionizable lipid nanoparticle (iLP181, pKa = 6.43) based on iLY1809 lipid enabling robust gene editing in vitro and in vivo. The iLP181 effectively encapsulate psgPLK1, the best-performing plasmid expressing for both Cas9 protein and sgRNA targeting Polo-like kinase 1 (PLK1). The iLP181/psgPLK1 nanoformulation showed uniformity in size, regular nanostructure and nearly neutral zeta potential at pH 7.4. The nanoformulation effectively triggered editing of PLK1 gene with more than 30% efficiency in HepG2-Luc cells. iLP181/psgPLK1 significantly accumulated in the tumor for more than 5 days after a single intravenous injection. In addition, it also achieved excellent tumor growth suppression compared to other nucleic acid modalities such as siRNA, without inducing adverse effects to the main organs including the liver and kidneys. This study not only provides a clinically-applicable lipid nanocarrier for delivering CRISPR/Cas system (even other bioactive molecules), but also constitutes a potential cancer treatment regimen base on DNA editing of oncogenes.

6.
Sci Adv ; 8(7): eabm1418, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35171673

RESUMO

Small interfering RNA (siRNA) therapeutic is considered to be a promising modality for the treatment of hyperlipidemia. Establishment of a thermostable clinically applicable delivery system remains a most challenging issue for siRNA drug development. Here, a series of ionizable lipid-like materials were rationally designed; 4 panels of lipid formulations were fabricated and evaluated on the basis of four representative structures. The lead lipid (A1-D1-5) was stable at 40°C, and the optimized formulation (iLAND) showed dose and time dual-dependent gene silencing pattern with median effective dose of 0.18 mg/kg. In addition, potent and durable reduction of serum cholesterol and triglyceride were achieved by administering siRNAs targeting angiopoietin-like 3 or apolipoprotein C3 (APOC3) in high-fat diet-fed mice, db/db mice, and human APOC3 transgenic mice, respectively, accompanied by displaying ideal safety profiles. Therefore, siRNA@iLAND prepared with thermostable A1-D1-5 demonstrates substantial value for siRNA delivery, hyperlipidemia therapy, and prevention of subsequent metabolic diseases.

7.
Biotechnol Adv ; 40: 107534, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32088327

RESUMO

Messenger RNA (mRNA)-based therapeutics hold the potential to cause a major revolution in the pharmaceutical industry because they can be used for precise and individualized therapy, and enable patients to produce therapeutic proteins in their own bodies without struggling with the comprehensive manufacturing issues associated with recombinant proteins. Compared with the current therapeutics, the production of mRNA is much cost-effective, faster and more flexible because it can be easily produced by in vitro transcription, and the process is independent of mRNA sequence. Moreover, mRNA vaccines allow people to develop personalized medications based on sequencing results and/or personalized conditions rapidly. Along with the great potential from bench to bedside, technical obstacles facing mRNA pharmaceuticals are also obvious. The stability, immunogenicity, translation efficiency, and delivery are all pivotal issues need to be addressed. In the recently published research results, these issues are gradually being overcome by state-of-the-art development technologies. In this review, we describe the structural properties and modification technologies of mRNA, summarize the latest advances in developing mRNA delivery systems, review the preclinical and clinical applications, and put forward our views on the prospect and challenges of developing mRNA into a new class of drug.


Assuntos
RNA Mensageiro/genética , Indústria Farmacêutica , Humanos , Preparações Farmacêuticas , Proteínas , Vacinas
8.
ACS Appl Mater Interfaces ; 12(29): 32289-32300, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32584027

RESUMO

Small interfering RNA (siRNA) shows excellent pharmaceutical prospects in treating diverse life-threatening diseases. Photodynamic therapy (PDT) is a clinically employed noninvasive treatment method that can trigger selective damage toward targeted tissue and cells. However, insufficient delivery of siRNA and photosensitizer to cancer cells remarkably hindered the application of siRNA and PDT in the treatment of cancer. In this study, a unique reactive oxygen species (ROS)-activatable polyplex, which consists of the PEGylated cationic polymer, ROS-cleavable linker, photosensitizer Ce6, and RRM2-against siRNA, termed PPTC/siRNA, was engineered. Upon irradiation of near-infrared (NIR) light, the polyplex efficiently generated ROS, which triggered degradation of the ROS-sensitive linker, disassembling the complex, destabilization of the cell membrane, and significantly accelerated cellular entry and endosomal escape of siRNA. Besides achieving effective siRNA internalization and gene silence in cancer cells in vitro, PPTC/siRNA synergistically inhibited tumor growth in both cell line-derived xenograft and patient-derived xenograft hepatocellular carcinoma murine models by repressing the RRM2 expression (reducing cell proliferation) and triggering photodynamic killing (enhancing cell apoptosis). The proposed polyplex also showed ideal safety profiles both in cell line and in animal. It provides a novel strategy for NIR-triggered RNAi and PDT combinational cancer treatment.


Assuntos
Antineoplásicos/farmacologia , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Polímeros/farmacologia , RNA Interferente Pequeno/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Células Hep G2 , Humanos , Raios Infravermelhos , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Camundongos , Tamanho da Partícula , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/metabolismo , Polímeros/síntese química , Polímeros/química , RNA Interferente Pequeno/química , RNA Interferente Pequeno/metabolismo , Propriedades de Superfície
9.
Bioact Mater ; 5(4): 1053-1061, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32691013

RESUMO

mRNA is a novel class of therapeutic modality that holds great promise in vaccination, protein replacement therapy, cancer immunotherapy, immune cell engineering etc. However, optimization of mRNA molecules and efficient in vivo delivery are quite important but challenging for its broad application. Here we present an ionizable lipid nanoparticle (iLNP) based on iBL0713 lipid for in vitro and in vivo expression of desired proteins using codon-optimized mRNAs. mRNAs encoding luciferase or erythropoietin (EPO) were prepared by in vitro transcription and formulated with proposed iLNP, to form iLP171/mRNA formulations. It was revealed that both luciferase and EPO proteins were successfully expressed by human hepatocellular carcinoma cells and hepatocytes. The maximum amount of protein expression was found at 6 h post-administration. The expression efficiency of EPO with codon-optimized mRNA was significantly higher than that of unoptimized mRNA. Moreover, no toxicity or immunogenicity was observed for these mRNA formulations. Therefore, our study provides a useful and promising platform for mRNA therapeutic development.

10.
Theranostics ; 8(9): 2361-2376, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29721085

RESUMO

Rationale: Delivery of nucleic acid molecules into skin remains a main obstacle for various types of gene therapy or vaccine applications. Here we propose a novel electroporation approach via combined use of a microneedle roller and a flexible interdigitated electroporation array (FIEA) for efficient delivery of DNA and siRNA into mouse skin. Methods: Using micromachining technology, closely spaced gold electrodes were made on a pliable parylene substrate to form a patch-like electroporation array, which enabled close surface contact between the skin and electrodes. Pre-penetration of the skin with a microneedle roller resulted in the formation of microchannels in the skin, which played a role as liquid electrodes in the skin and provided a uniform and deep electric field in the tissue when pulse stimulation was applied by FIEA. Results: Using this proposed method, gene (RFP) expression and siRNA transfection were successfully achieved in normal mice skin. Anti-SCD1 siRNA electroporated via this method mediated significant gene silencing in the skin. Moreover, electroporation assisted by the microneedle roller showed significant advantages over treatment with FIEA alone. This allowed nucleic acid transportation at low voltage, with ideal safety outcomes. Principal conclusions: Hence, the proposed electroporation approach in this study constitutes a novel way for delivering siRNA and DNA, and even other nucleic acid molecules, to mouse skin in vivo, potentially supporting clinical application in the treatment of skin diseases or intradermal/subcutaneous vaccination.


Assuntos
Ácidos Nucleicos/administração & dosagem , Pele/metabolismo , Animais , DNA/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Eletrodos , Eletroporação/métodos , Inativação Gênica/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Agulhas , Polímeros/química , RNA Interferente Pequeno/administração & dosagem , Transfecção/métodos , Xilenos/química
11.
Mol Ther Nucleic Acids ; 12: 805-816, 2018 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-30153565

RESUMO

Pancreatic cancer is currently one of the deadliest of the solid malignancies, whose incidence and death rates are increasing consistently during the past 30 years. Ribonucleotide reductase (RR) is a rate-limiting enzyme that catalyzes the formation of deoxyribonucleotides from ribonucleotides, which are essential for DNA synthesis and replication. In this study, 23 small interfering RNAs (siRNAs) against RRM2, the second subunit of RR, were designed and screened, and one of them (termed siRRM2), with high potency and good RNase-resistant capability, was selected. Transfection of siRRM2 into PANC-1, a pancreatic cell line, dramatically repressed the formation of cell colonies by inducing remarkable cell-cycle arrest at S-phase. When combining with doxorubicin (DOX), siRRM2 improved the efficacy 4 times more than applying DOX alone, suggesting a synergistic effect of siRRM2 and DOX. Moreover, the combined application of siRRM2-loaded lipid nanoparticle and DOX significantly suppressed the tumor growth on the PANC-1 xenografted murine model. The inhibition efficiency revealed by tumor weight at the endpoint of the treatment reached more than 40%. Hence, siRRM2 effectively suppressed pancreatic tumor growth alone or synergistically with DOX. This study provides a feasible target gene, a drug-viable siRNA, and a promising therapeutic potential for the treatment of pancreatic cancer.

12.
Plant Physiol Biochem ; 104: 99-113, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27107183

RESUMO

Basic helix-loop-helix (bHLH) transcription factors (TFs) comprise a large TF family and act as crucial regulators in various biological processes in plants. Here, we report the functional characterization of TabHLH1, a bHLH TF member in wheat (Triticum aestivum). TabHLH1 shares conserved bHLH domain and targets to nucleus with transactivation activity. Upon Pi and N deprivation, the expression of TabHLH1 was up-regulated in roots and leaves, showing a pattern to be gradually increased within 23-h treatment regimes. The lines with overexpression of TabHLH1 exhibited drastically improved tolerance to Pi and N deprivation, showing larger plant phenotype, more biomass, higher concentration and more accumulation of P and N than wild type (WT) upon the Pi- and N-starvation stresses. NtPT1 and NtNRT2.2, the genes encoding phosphate transporter (PT) and nitrate transporter (NRT) in tobacco, respectively, showed up-regulated expression in TabHLH1-overexpressing plants; knockdown expression of them led to deteriorated growth feature, lowered biomass, and decreased nutrient accumulation of plants under Pi- and N-deficient conditions. Compared with WT, the TabHLH1-overexpressing plants also showed lowered reactive oxygen species (ROS) accumulation and improved antioxidant enzyme (AE) activities, such as those of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD). NtSOD1, NtCAT1, and NtPOD1;6 that encode SOD, CAT, and POD, respectively, were up-regulated in TabHLH1-overexpressing plants. Further knockdown of these AE gene expression caused reduced antioxidant enzymatic activities, indicative of their crucial roles in mediating cellular ROS homeostasis in Pi- and N-starvation conditions. Together, TabHLH1 plays an important role in mediating adaptation to the Pi- and N-starvation stresses through transcriptional regulation of a set of genes encoding PT, NRT and AEs that mediate the taken up of Pi and N and the cellular homeostasis of ROS initiated by the nutrient stresses.


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Nitrogênio/farmacologia , Fósforo/farmacologia , Proteínas de Plantas/genética , Espécies Reativas de Oxigênio/metabolismo , Transcrição Gênica/efeitos dos fármacos , Triticum/genética , Triticum/fisiologia , Sequência de Aminoácidos , Antioxidantes/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/química , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Biomassa , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Homeostase/efeitos dos fármacos , Homeostase/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Domínios Proteicos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Homologia de Sequência de Aminoácidos , Ativação Transcricional/efeitos dos fármacos , Triticum/efeitos dos fármacos , Triticum/crescimento & desenvolvimento , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa