RESUMO
Single-nucleotide polymorphisms (SNPs) as the most important type of genetic variation are widely used in describing population characteristics and play vital roles in animal genetics and breeding. Large amounts of population genetic variation resources and tools have been developed in human, which provided solid support for human genetic studies. However, compared with human, the development of animal genetic variation databases was relatively slow, which limits the genetic researches in these animals. To fill this gap, we systematically identified â¼ 499 million high-quality SNPs from 4784 samples of 20 types of animals. On that basis, we annotated the functions of SNPs, constructed high-density reference panels and calculated genome-wide linkage disequilibrium (LD) matrixes. We further developed Animal-SNPAtlas, a user-friendly database (http://gong_lab.hzau.edu.cn/Animal_SNPAtlas/) which includes high-quality SNP datasets and several support tools for multiple animals. In Animal-SNPAtlas, users can search the functional annotation of SNPs, perform online genotype imputation, explore and visualize LD information, browse variant information using the genome browser and download SNP datasets for each species. With the massive SNP datasets and useful tools, Animal-SNPAtlas will be an important fundamental resource for the animal genomics, genetics and breeding community.
Assuntos
Bases de Dados Genéticas , Polimorfismo de Nucleotídeo Único , Animais , Genoma , Genótipo , Desequilíbrio de LigaçãoRESUMO
Long non-coding RNAs (lncRNAs) act as versatile regulators of many biological processes and play vital roles in various diseases. lncRNASNP is dedicated to providing a comprehensive repository of single nucleotide polymorphisms (SNPs) and somatic mutations in lncRNAs and their impacts on lncRNA structure and function. Since the last release in 2018, there has been a huge increase in the number of variants and lncRNAs. Thus, we updated the lncRNASNP to version 3 by expanding the species to eight eukaryotic species (human, chimpanzee, pig, mouse, rat, chicken, zebrafish, and fruitfly), updating the data and adding several new features. SNPs in lncRNASNP have increased from 11 181 387 to 67 513 785. The human mutations have increased from 1 174 768 to 2 387 685, including 1 031 639 TCGA mutations and 1 356 046 CosmicNCVs. Compared with the last release, updated and new features in lncRNASNP v3 include (i) SNPs in lncRNAs and their impacts on lncRNAs for eight species, (ii) SNP effects on miRNA-lncRNA interactions for eight species, (iii) lncRNA expression profiles for six species, (iv) disease & GWAS-associated lncRNAs and variants, (v) experimental & predicted lncRNAs and drug target associations and (vi) SNP effects on lncRNA expression (eQTL) across tumor & normal tissues. The lncRNASNP v3 is freely available at http://gong_lab.hzau.edu.cn/lncRNASNP3/.
Assuntos
Bases de Dados de Ácidos Nucleicos , Polimorfismo de Nucleotídeo Único , RNA Longo não Codificante , Animais , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismoRESUMO
BACKGROUND: As a newly identified subtype of HER2-negative tumors associated with a less favorable prognosis, it remains crucial to evaluate potential prognostic and predictive factors, particularly non-invasive biomarkers, for individuals with human epidermal growth factor 2 (HER2) low early-stage breast cancer (EBC). Multiple investigations have highlighted that HER2-negative patients with EBC exhibiting high homologous recombination deficiency (HRD) scores display lower rates of pathological complete response (PCR) to neoadjuvant chemotherapy (NAC). Nevertheless, no study to date has explored the correlation between HRD and the long-term prognosis in HER2-low patients with EBC. PATIENTS AND METHODS: This retrospective observational study focuses on primary EBC sourced from The Cancer Genome Atlas dataset (TCGA). It reveals the gene mutation landscape in EBC with low HER2 expression and elucidates the tumor immune landscape across different HRD states. Utilizing bioinformatics analysis and Cox proportional models, along with the Kaplan-Meier method, the study assesses the correlation between HRD status and disease-specific survival (DSS), disease-free interval (DFI), and progression-free interval (PFI). Subgroup analyses were conducted to identify potential variations in the association between HRD and prognosis. RESULTS: In the patients with HER2-low breast cancer, patients with homologous recombination related genes (HRRGs) defects had an HRD score about twice that of those without related genes mutations, and were at higher risk of acquiring ARID1A, ATM, and BRCA2 mutations. We also found that most immune cell abundances were significantly higher in EBC tumors with high HRD than in EBC tumors with low HRD or HRD-medium, particularly plasma B-cell abundance, CD8 T-cell abundance, and M1 macrophages. In addition, these tumors with HRD-high also appear to have significantly higher tumor immune scores and lower interstitial scores. Then, we analyzed the relationship between different HRD status and prognosis. There was statistical significance (Pâ =â .036 and Pâ =â .046, respectively) in DSS and PFI between the HRD-low and HRD-high groups, and patients with HRD-high EBC showed relatively poor survival outcomes. A medium HRD score (hazard ratio, HRâ =â 2.15, 95% CI: 1.04-4.41, Pâ =â .038) was a significant risk factor for PFI. Hormone receptor positivity is an important factor in obtaining medium-high HRD score and poor prognosis. CONCLUSION: Higher HRD scores were associated with poorer PFI outcomes, particularly in people with HR+/HER2-low. Varied HRD states exhibited distinctions in HRRGs and the tumor immune landscape. These insights have the potential to assist clinicians in promptly identifying high-risk groups and tailoring personalized treatments for patients with HER2-low EBC, aiming to enhance long-term outcomes.
Assuntos
Neoplasias da Mama , Receptor ErbB-2 , Reparo de DNA por Recombinação , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/mortalidade , Estudos Retrospectivos , Prognóstico , Receptor ErbB-2/genética , Pessoa de Meia-Idade , Biomarcadores Tumorais/genética , Adulto , IdosoRESUMO
BACKGROUND: The association between different phenotypes and genotypes of circulating tumor cells (CTCs) and efficacy of neoadjuvant chemotherapy (NAC) remains uncertain. This study was conducted to evaluate the relationship of FTH1 gene-associated CTCs (F-CTC) with/without epithelial-mesenchymal transition (EMT) markers, or their dynamic changes with the efficacy of NAC in patients with non-metastatic breast cancer. PATIENTS AND METHODS: This study enrolled 120 patients with non-metastatic breast cancer who planned to undergo NAC. The FTH1 gene and EMT markers in CTCs were detected before NAC (T0), after 2 cycles of chemotherapy (T1), and before surgery (T2). The associations of these different types of CTCs with rates of pathological complete response (pCR) and breast-conserving surgery (BCS) were evaluated using the binary logistic regression analysis. RESULTS: F-CTC in peripheral blood ≥1 at T0 was an independent factor for pCR rate in patients with HER2-positive (odds ratio [OR]=0.08, 95% confidence interval [CI], 0.01-0.98, P = .048). The reduction in the number of F-CTC at T2 was an independent factor for BCS rate (OR = 4.54, 95% CI, 1.14-18.08, P = .03). CONCLUSIONS: The number of F-CTC prior to NAC was related to poor response to NAC. Monitoring of F-CTC may help clinicians formulate personalized NAC regimens and implement BCS for patients with non-metastatic breast cancer.
Assuntos
Neoplasias da Mama , Células Neoplásicas Circulantes , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/cirurgia , Células Neoplásicas Circulantes/patologia , Estudos Prospectivos , Terapia Neoadjuvante , Mastectomia Segmentar , Ferritinas/uso terapêutico , Oxirredutases/uso terapêuticoRESUMO
Bone marrow niche cells have been reported to fine-tune hematopoietic stem cell (HSC) stemness via direct interaction or secreted components. Nevertheless, how niche cells control HSC activities remains largely unknown. We previously showed that angiopoietin-like protein 2 (ANGPTL2) can support the ex vivo expansion of HSCs by binding to human leukocyte immunoglobulin-like receptor B2. However, how ANGPTL2 from specific niche cell types regulates HSC activities under physiological conditions is still not clear. Herein, we generated an Angptl2-flox/flox transgenic mouse line and conditionally deleted Angptl2 expression in several niche cells, including Cdh5+ or Tie2+ endothelial cells, Prx1+ mesenchymal stem cells, and Pf4+ megakaryocytes, to evaluate its role in the regulation of HSC fate. Interestingly, we demonstrated that only endothelial cell-derived ANGPTL2 and not ANGPTL2 from other niche cell types plays important roles in supporting repopulation capacity, quiescent status, and niche localization. Mechanistically, ANGPTL2 enhances peroxisome-proliferator-activated receptor D (PPARD) expression to transactivate G0s2 to sustain the perinuclear localization of nucleolin to prevent HSCs from entering the cell cycle. These findings reveal that endothelial cell-derived ANGPTL2 serves as a critical niche component to maintain HSC stemness, which may benefit the understanding of stem cell biology in bone marrow niches and the development of a unique strategy for the ex vivo expansion of HSCs.
Assuntos
Proteína 2 Semelhante a Angiopoietina/metabolismo , Medula Óssea , Animais , Medula Óssea/metabolismo , Células da Medula Óssea , Células Endoteliais , Células-Tronco Hematopoéticas/metabolismo , Camundongos , Nicho de Células-TroncoRESUMO
BACKGROUND: Epilepsy and dementia are bidirectional. The purpose of this review was to investigate the epidemiological characteristics of and to identify the risk factors for epilepsy in patients with dementia and dementia in patients with epilepsy. METHODS: We retrieved the PubMed, Embase, Cochrane and Web of Science databases through January 2023. Two individuals screened the articles, extracted the data, and used a random effects model to pool the estimates and 95% confidence intervals (CIs). RESULTS: From 3475 citations, 25 articles were included. The prevalence of seizures/epilepsy was 4% among dementia patients and 3% among Alzheimer's disease (AD) patients. For vascular dementia, Lewy body dementia, and frontotemporal dementia, the pooled period prevalence of seizures/epilepsy was 6%, 3%, and 2%, respectively. Baseline early-onset AD was associated with the highest risk of 5-year epilepsy (pooled hazard ratios: 4.06; 95% CI: 3.25-5.08). Dementia patients had a 2.29-fold greater risk of seizures/epilepsy than non-dementia patients (95% CI: 1.37-3.83). Moreover, for baseline epilepsy, the pooled prevalence of dementia was 17% (95% CI: 10-25%), and that of AD was 15% (95% CI: 9-21%). The pooled results suggested that epilepsy is associated with a greater risk of dementia (risk ratio: 2.83, 95% CI: 1.64-4.88). CONCLUSIONS: There are still gaps in epidemiology regarding the correlation between dementia types and epilepsy, vascular risk factors, and the impact of antiseizure medication or cognitive improvement drugs on epilepsy and AD comorbidity.
Assuntos
Doença de Alzheimer , Epilepsia , Doença por Corpos de Lewy , Humanos , Epilepsia/complicações , Epilepsia/epidemiologia , Doença de Alzheimer/complicações , Doença de Alzheimer/epidemiologia , Comorbidade , Convulsões/epidemiologiaRESUMO
Enhancer RNAs (eRNAs) are a class of non-coding RNAs transcribed from enhancers. As the markers of active enhancers, eRNAs play important roles in gene regulation and are associated with various complex traits and characteristics. With increasing attention to eRNAs, numerous eRNAs have been identified in different human tissues. However, the expression landscape, regulatory network and potential functions of eRNAs in animals have not been fully elucidated. Here, we systematically characterized 185 177 eRNAs from 5085 samples across 10 species by mapping the RNA sequencing data to the regions of known enhancers. To explore their potential functions based on evolutionary conservation, we investigated the sequence similarity of eRNAs among multiple species. In addition, we identified the possible associations between eRNAs and transcription factors (TFs) or nearby genes to decipher their possible regulators and target genes, as well as characterized trait-related eRNAs to explore their potential functions in biological processes. Based on these findings, we further developed Animal-eRNAdb (http://gong_lab.hzau.edu.cn/Animal-eRNAdb/), a user-friendly database for data searching, browsing and downloading. With the comprehensive characterization of eRNAs in various tissues of different species, Animal-eRNAdb may greatly facilitate the exploration of functions and mechanisms of eRNAs.
Assuntos
Bases de Dados Genéticas , Elementos Facilitadores Genéticos/genética , RNA/genética , Software , Animais , Biologia Computacional , Regulação da Expressão Gênica/genética , Regiões Promotoras Genéticas/genética , Transcrição GênicaRESUMO
The increasing prevalence of autoimmune diseases globally has prompted extensive research and the development of immunosuppressants. Currently, immunosuppressive drugs such as cyclosporine, rapamycin, and tacrolimus have been utilized in clinical practice. However, long-term use of these drugs may lead to a series of adverse effects. Therefore, there is an urgent need to explore novel drug candidates for treating autoimmune diseases. This review aims to find potential candidate molecules for natural immunosuppressive compounds derived from plants, animals, and fungi over the past decade. These compounds include terpenoids, alkaloids, phenolic compounds, flavonoids, and others. Among them, compounds 49, 151, 173, 200, 204, and 247 have excellent activity; their IC50 were less than 1 µM. A total of 109 compounds have good immunosuppressive activity, with IC50 ranging from 1 to 10 µM. These active compounds have high medicinal potential. The names, sources, structures, immunosuppressive activity, and the structure-activity relationship were summarized and analyzed.
Assuntos
Produtos Biológicos , Imunossupressores , Imunossupressores/farmacologia , Imunossupressores/química , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Humanos , Animais , Relação Estrutura-Atividade , Terpenos/química , Terpenos/farmacologiaRESUMO
BACKGROUND: The depressor anguli oris muscle (DAO) is a pivotal treatment target when creating a harmonic jawline. However, evidence of its live morphology remains scarce. OBJECTIVES: In this study we aimed to reevaluate the DAO with a facile ultrasound analysis and thereby guide safer and more effective botulinum toxin type A (BTX-A) injection. METHODS: A prospective ultrasound assessment was conducted in 41 patients. Morphology of the DAO and its relative position to neighboring structures were appraised at the ubiquitous facial landmark, the labiomandibular fold (LMF). Three-dimensional images were captured before and after the patient received the BTX-A injection based on sonographic evidence. RESULTS: The skin-to-muscle depths of the DAO on average (measured from the medial to lateral border) were 5.26, 5.61, and 8.42 mm. The DAO becomes thinner and wider from zone 1 to zone 3 (P < .001). Overlapping lengths of the DAO and the depressor labii inferioris increased from zone 1 to zone 3: 4.74, 9.68, 14.54 mm (P < .001). The medial border of the DAO was located at 4.33, 6.12, 8.90 mm medial to the LMF (zone 1-3), and no muscle fibers of the DAO were observed in zone 1 or zone 2 in nearly one-third of patients. Improvement of the mouth corner downturn angle upon receiving BTX-A injection at zones 2 and 3 were 88.3%, 32.3%, and 14.7% for the neutral, maximum smile, and down-turning mouth corner expressions. CONCLUSIONS: This work established an informative ultrasound portrait of the DAO and structures in the perioral region, which suggested the LMF as a convenient landmark for locating the DAO. Injection at the middle and lower thirds of the LMF at a 4- to 5-mm depth is recommended.
Assuntos
Toxinas Botulínicas Tipo A , Técnicas Cosméticas , Músculos Faciais , Fármacos Neuromusculares , Rejuvenescimento , Ultrassonografia , Humanos , Toxinas Botulínicas Tipo A/administração & dosagem , Estudos Prospectivos , Feminino , Músculos Faciais/diagnóstico por imagem , Músculos Faciais/efeitos dos fármacos , Músculos Faciais/anatomia & histologia , Pessoa de Meia-Idade , Adulto , Ultrassonografia/métodos , Masculino , Fármacos Neuromusculares/administração & dosagem , Injeções Intramusculares/métodos , Idoso , Imageamento Tridimensional , Resultado do Tratamento , Pontos de Referência AnatômicosRESUMO
The differential enzymatic activity in the endo/lysosomes of particular cells could trigger targeted endosomal escape functions, enabling selective intracellular protein delivery. However, this strategy may be jeopardized due to protein degradation during endosomal trafficking. Herein, using custom made fluorescent probes to assess the endosomal activity of cathepsin B (CTSB) and protein degradation, we found that certain cancer cells with hyperacidified endosomes grant a spatiotemporal window where CTSB activity surpass protein digestion. This inspired the engineering of antibody-loaded polymeric nanocarriers having CTSB-activatable endosomal escape ability. The nanocarriers selectively escaped from the endo/lysosomes in the cells with high endosomal CTSB activity and delivered active antibodies to intracellular targets. This study provides a viable strategy for cell-specific protein delivery using stimuli-responsive nanocarriers with controlled endosomal escape.
Assuntos
Endossomos , Neoplasias , Endossomos/metabolismo , Anticorpos/metabolismo , Polímeros/metabolismo , Lisossomos/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismoRESUMO
How to achieve CO2 electroreduction in high efficiency is a current challenge with the mechanism not well understood yet. The metal-organic cages with multiple metal sites, tunable active centers, and well-defined microenvironments may provide a promising catalyst model. Here, we report self-assembly of Ag4L4 type cuboctahedral cages from coordination dynamic Ag+ ion and triangular imidazolyl ligand 1,3,5-tris(1-benzylbenzimidazol-2-yl) benzene (Ag-MOC-X, X=NO3, ClO4, BF4) via anion template effect. Notably, Ag-MOC-NO3 achieves the highest CO faradaic efficiency in pH-universal electrolytes of 86.1 % (acidic), 94.1 % (neutral) and 95.3 % (alkaline), much higher than those of Ag-MOC-ClO4 and Ag-MOC-BF4 with just different counter anions. In situ attenuated total reflection Fourier transform infrared spectroscopy observes formation of vital intermediate *COOH for CO2-to-CO conversion. The density functional theory calculations suggest that the adsorption of CO2 on unsaturated Ag-site is stabilized by C-Hâ â â O hydrogen-bonding of CO2 in a microenvironment surrounded by three benzimidazole rings, and the activation of CO2 is dependent on the coordination dynamics of Ag-centers modulated by the hosted anions through Agâ â â X interactions. This work offers a supramolecular electrocatalytic strategy based on Ag-coordination geometry and host-guest interaction regulation of MOCs as high-efficient electrocatalysts for CO2 reduction to CO which is a key intermediate in chemical industry process.
RESUMO
Expression quantitative trait loci (eQTL) analysis has been widely used in interpreting disease-associated loci through correlating genetic variant loci with the expression of specific genes. RNA-sequencing (RNA-Seq), which can quantify gene expression at the genome-wide level, is often used in eQTL identification. Since different normalization methods of gene expression have substantial impacts on RNA-seq downstream analysis, it is of great necessity to systematically compare the effects of these methods on eQTL identification. Here, by using RNA-seq and genotype data of four different cancers in The Cancer Genome Atlas (TCGA) database, we comprehensively evaluated the effect of eight commonly used normalization methods on eQTL identification. Our results showed that the application of different methods could cause 20-30% differences in the final results of eQTL identification. Among these methods, COUNT, Median of Ratio (MED) and Trimmed Mean of M-values (TMM) generated similar results for identifying eQTLs, while Fragments Per Kilobase Million (FPKM) or RANK produced more differential results compared with other methods. Based on the accuracy and receiver operating characteristic (ROC) curve, the TMM method was found to be the optimal method for normalizing gene expression data in eQTLs analysis. In addition, we also evaluated the performance of different pairwise combinations of these methods. As a result, compared with single normalization methods, the combination of methods can not only identify more cis-eQTLs, but also improve the performance of the ROC curve. Overall, this study provides a comprehensive comparison of normalization methods for identifying eQTLs from RNA-seq data, and proposes some practical recommendations for diverse scenarios.
Assuntos
Biologia Computacional , Estudos de Associação Genética/métodos , Predisposição Genética para Doença , Locos de Características Quantitativas , Algoritmos , Biologia Computacional/métodos , Bases de Dados Genéticas , Expressão Gênica , Genótipo , Humanos , Curva ROC , Reprodutibilidade dos Testes , Fluxo de TrabalhoRESUMO
Trypanosoma brucei is a protozoan parasite that causes Human African Trypanosomiasis (HAT), a neglected tropical disease (NTD) that is endemic in 36 countries in sub-Saharan Africa. Only a handful drugs are available for treatment, and these have limitations, including toxicity and drug resistance. Using the natural product, curcumin, as a starting point, several curcuminoids and related analogs were evaluated against bloodstream forms of T. b. brucei. A particular subset of dibenzylideneacetone (DBA) compounds exhibited potent in vitro antitrypanosomal activity with sub-micromolar EC50 values. A structure-activity relationship study including 26 DBA analogs was initiated, and several compounds exhibited EC50 values as low as 200 nM. Cytotoxicity counter screens in HEK293 cells identified several compounds having selectivity indices above 10. These data suggest that DBAs offer starting points for a new small molecule therapy of HAT.
Assuntos
Tripanossomicidas , Trypanosoma brucei brucei , Tripanossomíase Africana , Animais , Humanos , Tripanossomicidas/farmacologia , Tripanossomicidas/uso terapêutico , Doenças Negligenciadas/tratamento farmacológico , Células HEK293 , Tripanossomíase Africana/tratamento farmacológico , Tripanossomíase Africana/parasitologia , Relação Estrutura-AtividadeRESUMO
Genotype imputation is a process that estimates missing genotypes in terms of the haplotypes and genotypes in a reference panel. It can effectively increase the density of single nucleotide polymorphisms (SNPs), boost the power to identify genetic association and promote the combination of genetic studies. However, there has been a lack of high-quality reference panels for most plants, which greatly hinders the application of genotype imputation. Here, we developed Plant-ImputeDB (http://gong_lab.hzau.edu.cn/Plant_imputeDB/), a comprehensive database with reference panels of 12 plant species for online genotype imputation, SNP and block search and free download. By integrating genotype data and whole-genome resequencing data of plants from various studies and databases, the current Plant-ImputeDB provides high-quality reference panels of 12 plant species, including â¼69.9 million SNPs from 34 244 samples. It also provides an easy-to-use online tool with the option of two popular tools specifically designed for genotype imputation. In addition, Plant-ImputeDB accepts submissions of different types of genomic variations, and provides free and open access to all publicly available data in support of related research worldwide. In general, Plant-ImputeDB may serve as an important resource for plant genotype imputation and greatly facilitate the research on plant genetic research.
Assuntos
Bases de Dados Genéticas , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Genótipo , Proteínas de Plantas/genética , Plantas/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Produtos Agrícolas , Estudos de Associação Genética , Internet , Anotação de Sequência Molecular , Melhoramento Vegetal/métodos , Proteínas de Plantas/metabolismo , Plantas/classificação , Plantas/metabolismo , Polimorfismo de Nucleotídeo Único , Padrões de Referência , SoftwareRESUMO
Alternative polyadenylation (APA) is an important post-transcriptional regulatory mechanism that recognizes different polyadenylation signals on transcripts, resulting in transcripts with different lengths of 3' untranslated regions and thereby influencing a series of biological processes. Recent studies have highlighted the important roles of APA in human. However, APA profiles in other animals have not been fully recognized, and there is no database that provides comprehensive APA information for other animals except human. Here, by using the RNA sequencing data collected from public databases, we systematically characterized the APA profiles in 9244 samples of 18 species. In total, we identified 342 952 APA events with a median of 17 020 per species using the DaPars2 algorithm, and 315 691 APA events with a median of 17 953 per species using the QAPA algorithm in these 18 species, respectively. In addition, we predicted the polyadenylation sites (PAS) and motifs near PAS of these species. We further developed Animal-APAdb, a user-friendly database (http://gong_lab.hzau.edu.cn/Animal-APAdb/) for data searching, browsing and downloading. With comprehensive information of APA events in different tissues of different species, Animal-APAdb may greatly facilitate the exploration of animal APA patterns and novel mechanisms, gene expression regulation and APA evolution across tissues and species.
Assuntos
Processamento Alternativo , Biologia Computacional/métodos , Bases de Dados Genéticas , Poliadenilação , RNA Mensageiro/genética , Software , Regiões 3' não Traduzidas , Animais , Humanos , Motivos de Nucleotídeos , NavegadorRESUMO
Messenger RNA (mRNA) therapeutics have recently demonstrated high clinical potential with the accelerated approval of SARS-CoV-2 vaccines. To fulfill the promise of unprecedented mRNA-based treatments, the development of safe and efficient carriers is still necessary to achieve effective delivery of mRNA. Herein, we prepared mRNA-loaded nanocarriers for enhanced in vivo delivery using biocompatible block copolymers having functional amino acid moieties for tunable interaction with mRNA. The block copolymers were based on flexible poly(ethylene glycol)-poly(glycerol) (PEG-PG) modified with glycine (Gly), leucine (Leu) or tyrosine (Tyr) via ester bonds to generate block catiomers. Moreover, the amino acids can be gradually detached from the block copolymers after ester bond hydrolyzation, avoiding cytotoxic effects. When mixed with mRNA, the block catiomers formed narrowly distributed polymeric micelles with high stability and enhanced delivery efficiency. Particularly, the micelles based on tyrosine-modified PEG-PG (PEG-PGTyr), which formed a polyion complex (PIC) and π-π stacking with mRNA, displayed excellent stability against polyanions and promoted mRNA integrity in serum. PEG-PGTyr-based micelles also increased the cellular uptake and the endosomal escape, promoting high protein expression both in vitro and in vivo. Furthermore, the PEG-PGTyr-based micelles significantly extended the half-life of the loaded mRNA after intravenous injection. Our results highlight the potential of PEG-PGTyr-based micelles as safe and effective carriers for mRNA, expediting the rational design of polymeric materials for enhanced mRNA delivery.
RESUMO
How to transfer industrial exhaust gases of nitrogen oxides into high-values product is significantly important and challenging. Herein, we demonstrate an innovative method for artificial synthesis of essential α-amino acids from nitric oxide (NO) by reacting with α-keto acids through electrocatalytic process with atomically dispersed Fe supported on N-doped carbon matrix (AD-Fe/NC) as the catalyst. A yield of valine with 32.1â µmol mgcat -1 is delivered at -0.6â V vs. reversible hydrogen electrode, corresponding a selectivity of 11.3 %. In situ X-ray absorption fine structure and synchrotron radiation infrared spectroscopy analyses show that NO as nitrogen source converted to hydroxylamine that promptly nucleophilic attacked on the electrophilic carbon center of α-keto acid to form oxime and subsequent reductive hydrogenation occurred on the way to amino acid. Over 6 kinds of α-amino acids have been successfully synthesized and gaseous nitrogen source can be also replaced by liquid nitrogen source (NO3 - ). Our findings not only provide a creative method for converting nitrogen oxides into high-valued products, which is of epoch-making significance towards artificial synthesis of amino acids, but also benefit in deploying near-zero-emission technologies for global environmental and economic development.
Assuntos
Aminoácidos Essenciais , Óxido Nítrico , Aminoácidos , Hidrogenação , Carbono , Gases , CetoácidosRESUMO
BACKGROUND: Approximate 25% HER2-positive (HER2+) breast cancer (BC) patients treated with trastuzumab recurred rapidly. However, the mechanisms underlying trastuzumab resistance remained largely unclear. METHODS: Trastuzumab-resistant associated circRNAs were identified by circRNAs high-throughput screen and qRT-PCR in HER2+ breast cancer tissues with different trastuzumab response. The biological roles of trastuzumab-resistant associated circRNAs were detected by cell vitality assay, colony formation assay, Edu assay, patient-derived xenograft (PDX) models and orthotopic animal models. For mechanisms research, the co-immunoprecipitation, Western blot, immunofluorescence, and pull down assays confirmed the relevant mechanisms of circRNA and binding proteins. RESULTS: We identified a circRNA circCDYL2, which was overexpressed in trastuzumab-resistant patients, which conferred trastuzumab resistance in breast cancer cells in vitro and in vivo. Mechanically, circCDYL2 stabilized GRB7 by preventing its ubiquitination degradation and enhanced its interaction with FAK, which thus sustained the activities of downstream AKT and ERK1/2. Trastuzumab-resistance of HER2+ BC cells with high circCDYL2 could be reversed by FAK or GRB7 inhibitor. Clinically, HER2+ BC patients with high levels of circCDYL2 developed rapid recurrence and had shorter disease-free survival (DFS) and overall survival (OS) following anti-HER2 therapy compared to those with low circCDYL2. CONCLUSIONS: circCDYL2-GRB7-FAK complex plays a critical role in maintaining HER2 signaling, which contributes to trastuzumab resistance and circCDYL2 is a potential biomarker for trastuzumab-resistance in HER2+ BC patients.
Assuntos
Neoplasias da Mama/genética , Proteínas Correpressoras/genética , Resistencia a Medicamentos Antineoplásicos/genética , Hidroliases/genética , RNA Circular , Receptor ErbB-2/metabolismo , Transdução de Sinais , Animais , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Gerenciamento Clínico , Suscetibilidade a Doenças , Feminino , Proteína Adaptadora GRB7/metabolismo , Humanos , Camundongos , Ligação Proteica , Proteólise , Radioterapia , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-2/genética , UbiquitinaçãoRESUMO
Animal-ImputeDB (http://gong_lab.hzau.edu.cn/Animal_ImputeDB/) is a public database with genomic reference panels of 13 animal species for online genotype imputation, genetic variant search, and free download. Genotype imputation is a process of estimating missing genotypes in terms of the haplotypes and genotypes in a reference panel. It can effectively increase the density of single nucleotide polymorphisms (SNPs) and thus can be widely used in large-scale genome-wide association studies (GWASs) using relatively inexpensive and low-density SNP arrays. However, most animals except humans lack high-quality reference panels, which greatly limits the application of genotype imputation in animals. To overcome this limitation, we developed Animal-ImputeDB, which is dedicated to collecting genotype data and whole-genome resequencing data of nonhuman animals from various studies and databases. A computational pipeline was developed to process different types of raw data to construct reference panels. Finally, 13 high-quality reference panels including â¼400 million SNPs from 2265 samples were constructed. In Animal-ImputeDB, an easy-to-use online tool consisting of two popular imputation tools was designed for the purpose of genotype imputation. Collectively, Animal-ImputeDB serves as an important resource for animal genotype imputation and will greatly facilitate research on animal genomic selection and genetic improvement.
Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Variação Genética , Genótipo , Algoritmos , Animais , Frequência do Gene , Estudo de Associação Genômica Ampla , Genômica , Haplótipos , Internet , Polimorfismo de Nucleotídeo Único , Linguagens de Programação , Valores de Referência , Especificidade da Espécie , Interface Usuário-ComputadorRESUMO
Alternative polyadenylation (APA) is an important post-transcriptional regulation that recognizes different polyadenylation signals (PASs), resulting in transcripts with different 3' untranslated regions, thereby influencing a series of biological processes and functions. Recent studies have revealed that some single nucleotide polymorphisms (SNPs) could contribute to tumorigenesis and development through dysregulating APA. However, the associations between SNPs and APA in human cancers remain largely unknown. Here, using genotype and APA data of 9082 samples from The Cancer Genome Atlas (TCGA) and The Cancer 3'UTR Altas (TC3A), we systematically identified SNPs affecting APA events across 32 cancer types and defined them as APA quantitative trait loci (apaQTLs). As a result, a total of 467 942 cis-apaQTLs and 30 721 trans-apaQTLs were identified. By integrating apaQTLs with survival and genome-wide association studies (GWAS) data, we further identified 2154 apaQTLs associated with patient survival time and 151 342 apaQTLs located in GWAS loci. In addition, we designed an online tool to predict the effects of SNPs on PASs by utilizing PAS motif prediction tool. Finally, we developed SNP2APA, a user-friendly and intuitive database (http://gong_lab.hzau.edu.cn/SNP2APA/) for data browsing, searching, and downloading. SNP2APA will significantly improve our understanding of genetic variants and APA in human cancers.