Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
BMC Oral Health ; 24(1): 592, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778368

RESUMO

BACKGROUND: Treating the coronal dens invaginatus (CDI) with pulp infection commonly involves the removal of invagination, which increases the risk of perforation and fracture, and compromises the tooth structure. Minimally invasive endodontic management of CDI is highly recommended. This report describes two cases of type II CDI with the application of personalized templates. CASE PRESENTATION: Two cases of type II CDI, affecting the main root canal in a maxillary canine and a lateral incisor, were diagnosed. A guided endodontics (GE) approach was applied. Cone-beam computed tomography and intraoral scans were imported and aligned in a virtual planning software to design debridement routes and templates. The MICRO principle (which involves the aspects of Mechanical (M) debridement, Irrigation (I), Access cavities (C), Rectilinear routes (R), and Obstruction (O)) was proposed for designing optimal debridement routes for future applications. The templates were innovatively personalized and designed to preserve the tooth structure maximally while effectively debriding the root canal. Root canal treatment with supplementary disinfection was then performed. The follow-up of the two patients revealed favorable clinical and radiographic outcomes. CONCLUSIONS: The GE approach could be a feasible method for preserving healthy dental structure while effectively debriding the root canal, thereby achieving successful and minimally invasive endodontic treatment for CDI.


Assuntos
Tomografia Computadorizada de Feixe Cônico , Dens in Dente , Tratamento do Canal Radicular , Humanos , Desbridamento/métodos , Dens in Dente/terapia , Dens in Dente/complicações , Dens in Dente/diagnóstico por imagem , Incisivo/anormalidades , Incisivo/diagnóstico por imagem , Procedimentos Cirúrgicos Minimamente Invasivos/métodos , Tratamento do Canal Radicular/métodos
2.
Small ; 19(45): e2304324, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37434331

RESUMO

Photodynamic therapy (PDT) acts as a powerful weapon against infectious diseases for its enormous antimicrobial activity that quickly elicits storms of reactive oxygen species (ROS). Nevertheless, redundant ROS during treatment inevitably bring detriments in revascularization. To address this dilemma, an innovative P-N bio-heterojunction (bio-HJ) material consisting of p-type copper sulfide (p-CuS), n-type bismuth sulfide (n-Bi2 S3 ), and lactate oxidase (LOx) for effective treatment of recalcitrant infectious wounds by promoting angiogenesis is devised. LOx exhausts lactic acid accumulated in infection environment and converts it to hydrogen peroxide (H2 O2 ), which subsequently yields bactericidal hydroxyl radicals (·OH) via Fenton-like reactions. Ultimately, the P-N bio-HJs exert synergistic photothermal, photodynamic, and chemodynamic effects for rapid bacterial annihilation. Moreover, in vitro and RNA-seq analyses reveal that the crafted bio-HJs dramatically expedite the proliferation of L929 cells and promote angiogenesis by up-regulating angiogenic gene expression in hypoxia-inducible factor-1 (HIF-1) signaling pathway, which may ascribe to the evolution of H2 S in response to the infection microenvironment. Critically, results of in vivo experiments have authenticated that the bio-HJs significantly boost healing rates of full-thickness wounds by slaughtering bacteria, elevating angiogenesis, and promoting cytothesis. As envisioned, this work furnishes a novel tactic for the effective treatment of bacteria-invaded wound using H2 S-liberating P-N bio-HJs.


Assuntos
Fotoquimioterapia , Pele , Espécies Reativas de Oxigênio/metabolismo , Pele/metabolismo , Radical Hidroxila , Regeneração , Peróxido de Hidrogênio
3.
J Appl Microbiol ; 134(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38086612

RESUMO

AIMS: This research aimed to investigate the inhibitory effects of Pudilan mouthwash (PDL) on Streptococcus mutans (S. mutans) biofilms and identify its chemical components. METHODS AND RESULTS: The impacts of 100% concentrated PDL on S. mutans biofilm were detected by colony-forming unit (CFU) assays, crystal violet staining, confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM), and quantitative real-time PCR (qRT‒PCR). The biocompatibility with human gingival fibroblasts (HGFs) was evaluated by Cell-Counting-Kit-8 (CCK-8) assay. And chemical components were identified by UPLC-HRMS. PBS and 0.12% chlorhexidine were used as negative and positive controls, respectively. Results indicate early 8-h S. mutans biofilms are sensitive to PDL. Additionally, it leads to a decrease in bacterial activities and dextran-dependent aggregation in 24-h S. mutans biofilms. PDL significantly downregulates the gene expression of gtfB/C/D and smc. And 114 components are identified. CONCLUSIONS: PDL has an inhibitory effect on S. mutans and favorable biocompatibility. It has potential to be exploited as a novel anti-biofilm agent.


Assuntos
Antissépticos Bucais , Streptococcus mutans , Humanos , Antissépticos Bucais/farmacologia , Dextranos/metabolismo , Dextranos/farmacologia , Clorexidina/farmacologia , Biofilmes
4.
Environ Microbiol ; 24(3): 1395-1410, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35064734

RESUMO

Streptococcus mutans (S. mutans) is the principal etiological agent in cariogenesis because of its ability to metabolize sucrose into extracellular polysaccharides (EPS). The response regulators GcrR and VicR could regulate EPS metabolism, but with opposing regulatory functions. However, the cooperative interactions between gcrR and vicR regulating sucrose-selective EPS metabolism have not been fully elucidated. First, we constructed several dual-mutant strains (vicR + gcrR+, vicR and gcrR overexpression; vicR + gcrR-, vicR overexpression and gcrR deficient; ASvicRgcrR+, vicR low-expression and gcrR overexpression; ASvicRgcrR-, vicR low-expression and gcrR deficient) to clarify gtfB/gtfC expression levels were modulated by gcrR regardless of the vicR gene expression levels. Next, we found gcrR deletion mutant (SmugcrR) displayed obvious auto-aggregation and bacterial cells were densely packed in enriched EPS induced by sucrose. In the contrast, SmugcrR biofilm showed very little carbohydrate-dependent aggregation in the absence of sucrose. The presence of sucrose amplifies the negative regulation of gcrR acting as a 'switch-off'. After sucrose induction, dexA gene expression was significantly enhanced in gcrR overexpression mutant (SmugcrR+). Furthermore, GcrR was shown to directly bind to the promoter region of the dexA gene. Taken together, our results reveal that GcrR interacts with VicR to block EPS biosynthesis via polysaccharide digestion by DexA, and that this process is induced in a sucrose-selective manner. Hence, targeting GcrR is a potential strategy for the management of dental caries.


Assuntos
Cárie Dentária , Streptococcus mutans , Proteínas de Bactérias/metabolismo , Biofilmes , Regulação Bacteriana da Expressão Gênica , Humanos , Streptococcus mutans/genética , Sacarose/metabolismo
5.
Small ; 18(12): e2105988, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35088512

RESUMO

For quick disinfection treatment, phototherapy, including photothermal therapy and photodynamic therapy, has emerged as a promising alternative to conventional methods. However, the bactericidal effect of phototherapy, which only works upon light, is short-lived. The remaining bacteria in situ may repopulate when the irradiation of light is withdrawn. To address this refractory concern, an antibacterial fibrous membrane consisting of electrospun poly (polycaprolactone) scaffolds and polydopamine (pDA) coated MXene/Ag3 PO4 bioheterojunctions (MX@AgP bio-HJs) is devised and developed. Upon near-infrared (NIR) illumination, the MX@AgP nanoparticle (NP) in nanofibrous electrospun membranes exert the excellent bactericidal effect of phototherapy and release Ag+ ions which stop the remaining bacteria from multiplying in the dark state. When removing NIR light, pDA in situ reduces Ag+ ions to Ag0 NPs to realize the self-rechargeability of Ag+ ions and provides enough Ag+ ions for the second phototherapy. In vivo results show that photoactivated nanofibrous membranes can re-shape an infected wound microenvironment to the regenerative microenvironment through killing bacteria, ceasing bleeding, increasing epithelialization, and collagen deposition on the wound bed, as well as promoting angiogenesis. As predicted, the proposal work offers potential prospects for nanofibrous membranes with NIR-assisted "self-rechargeable" antibacterial properties to treat bacteria-infected full-thickness wounds.


Assuntos
Nanofibras , Antibacterianos/farmacologia , Fototerapia , Regeneração , Pele
6.
Small ; 18(38): e2203644, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35989094

RESUMO

The integrity of collagen matrix structure is a prerequisite for effectively inducing biomimetic remineralization. Repeated low pH stimulation activates matrix metalloproteinases (MMPs) in dental caries. Activated MMPs cause the breakdown of collagen fibrils. Collagen stabilization is a major obstacle to the clinical application of remineralization templates. Here, galardin-loaded poly(amido amine) (PAMAM)-NGV (PAMAM-NGV@galardin, PNG) is constructed to induce collagen stabilization and dentin biomimetic remineralization simultaneously, in order to combat early caries in dentin. PAMAM acts in the role of nucleation template for dentin remineralization, while galardin acts as the role of MMPs inhibitor. NGV peptides modified on the surface of dendrimer core can form small clusters with synergistic movement in short range, and those short-range clusters can form domain areas with different properties on the surface of PAMAM core and restrict the movement of collagen, favoring collagen crosslinking, which can be explained through the computational simulation analysis results. NGV peptides and galardin show a dual collagen-protective effect, laying the foundation for the dentin remineralization effect induced by PAMAM. PNG induces dentin remineralization in an environment with collagenase, meanwhile showsing anti-dentin caries efficacy in vivo. These findings indicate that PNG has great potential to combat early dentin caries for future clinical application.


Assuntos
Dendrímeros , Cárie Dentária , Aminas , Biomimética , Fosfatos de Cálcio/química , Colágeno , Cárie Dentária/tratamento farmacológico , Humanos , Metaloproteinases da Matriz , Remineralização Dentária/métodos
7.
Fish Shellfish Immunol ; 123: 265-281, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35272057

RESUMO

Edwardsiella tarda is one of the most harmful bacterial pathogens for aquaculture flatfish. After artificial infection of 47 Japanese flounder (Paralichthys olivaceus) families, resistant and susceptible families were identified in this study. High-throughput sequencing was performed on the liver transcriptome of uninfected groups (PoRU and PoSU) and infected groups (PoRC and PoSC). Through assembly and annotation, a total of 3012 and 1386 differentially expressed genes (DEGs) were identified in PoRU vs. PoSU and PoRC vs. PoSC. The significant enrichment pathways between PoRU and PoSU were mainly in metabolic and biosynthesis pathways. A total of thirty dominant enrichment pathways between PoRC and PoSC mainly focused on some immune-related pathways, including the hematopoietic cell lineage, cytokine-cytokine receptor interaction, complement and coagulation cascades, antigen processing and presentation, the intestinal immune network for immunoglobulin A (IgA) production and T/B cell receptor signaling pathway. Under the protein-protein interaction (PPI) analysis, hub genes, including CD molecules, complement component factors and chemokines, were identified in the network, and 16 core genes were differentially expressed in resistant and sustainable families in quantitative polymerase chain reaction (qPCR) validation. This study represents the first transcriptome analysis based on resistant and susceptible families and provides resistant genes to understand the potential molecular mechanisms of antibacterial function in marine fish. The results obtained in this study provide crucial information on gene markers for resistant breeding of Japanese flounder.


Assuntos
Infecções por Enterobacteriaceae , Doenças dos Peixes , Linguado , Animais , Edwardsiella tarda/fisiologia , Perfilação da Expressão Gênica/veterinária
8.
Genomics ; 113(4): 1838-1844, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33819565

RESUMO

Based on 1572 re-sequenced Chinese tongue sole (Cynoglossus semilaevis), we investigated the accuracy of four genomic methods at predicting genomic estimated breeding values (GEBVs) of Vibrio harveyi resistance in C. semilaevis when SNPs varying from 500 to 500 k. All methods outperformed the pedigree-based best linear unbiased prediction when SNPs reached 50 k or more. Then, we developed an SNP array "Solechip No.1" for C. semilaevis breeding using the Affymetrix Axiom technology. This array contains 38,295 SNPs with an average of 10.5 kb inter-spacing between two adjacent SNPs. We selected 44 candidates as the parents of 23 families and genotyped them by the array. The challenge survival rates of offspring families had a correlation of 0.706 with the mid-parental GEBVs. This SNP array is a convenient and reliable tool in genotyping, which could be used for improving V. harveyi resistance in C. semilaevis coupled with the genomic selection methods.


Assuntos
Doenças dos Peixes , Linguados , Vibrioses , Animais , China , Doenças dos Peixes/genética , Doenças dos Peixes/microbiologia , Linguados/genética , Linguados/microbiologia , Genômica , Polimorfismo de Nucleotídeo Único , Vibrio , Vibrioses/genética , Vibrioses/veterinária
9.
Clin Oral Investig ; 26(4): 3637-3650, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35066688

RESUMO

OBJECTIVE: The bonding interface of dental filling therapy is the weak point in resisting secondary caries. Adhesives containing nanoparticles of amorphous calcium phosphate (NACP) and dimethylaminohexadecyl methacrylate (DMAHDM) have been demonstrated in vitro to prevent bacteria from producing acid and to promote tooth remineralization. The present study aimed to evaluate the efficacy of adhesive with NACP and DMAHDM to prevent secondary caries in vivo. MATERIALS AND METHODS: Artificial cavities were created on the first molar on both sides of the maxillary in a rat model. One side was treated with adhesive containing NACP + DMAHDM, while on the other side, a commercial adhesive served as control. After 24 days of cariogenic feeding, the degree of secondary caries was evaluated by micro-CT and a modified Keyes scoring method. Quantitative real-time PCR (qPCR) and colony-forming unit (CFU) counts were used to evaluate the antibacterial efficacy of the materials. Biocompatibility was also investigated. RESULTS: In the rat model, the adhesive with NACP + DMAHDM showed excellent biocompatibility and effectively decreased the amount of bacteria. The experimental group demonstrated excellent remineralization effectiveness, with a lower modified Keyes score and mineral loss of 34.16 ± 2.13 vol% µm, compared with 77.44 ± 7.22 vol% µm in the control group, according to micro-CT (P < 0.05), showing excellent capacity to inhibit secondary caries. CONCLUSIONS: The NACP-DMAHDM-containing adhesive exhibited good performance in preventing secondary caries in vivo. CLINICAL RELEVANCE: Adhesives containing NACP and DMAHDM have great potential for use in clinical dentistry to prevent secondary caries by inhibiting bacterial growth and promoting remineralization.


Assuntos
Biofilmes , Suscetibilidade à Cárie Dentária , Animais , Antibacterianos/farmacologia , Fosfatos de Cálcio/farmacologia , Cimentos Dentários/farmacologia , Metacrilatos/farmacologia , Metilaminas , Ratos , Remineralização Dentária/métodos
10.
Fish Physiol Biochem ; 48(5): 1365-1375, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36125598

RESUMO

The phenomenon of sexual size dimorphism (SSD), existing in mammals, birds, reptiles, spiders, amphibians, insects, and fishes, is generally related to feeding efficiency, energy allocation, sex steroids, and somatotropic and reproductive endocrine axes. Recently, positive and negative regulations of sex steroids have been reported on SSD in various species. Chinese tongue soles (Cynoglossus semilaevis) at 4 months were fed with 17ß-estradiol (E2) and testosterone (T) supplemented feeds for 8 months to assess the effect of sex steroids on growth traits in different sexes. The potential genetic regulation was examined using several growth-related genes. The results showed that two sex steroid hormones had inhibitory effects on the growth performance of different sexes of C. semilaevis. At the age of 8 months, the expression of insulin-like growth factor 2 gene (igf2), 24-dehydrocholesterol reductase (dhcr24), leptin, and estrogen receptor 2 (esr2) in the liver showed an overall downward trend. The expression of insulin-like growth factor 1 (igf1) was reduced, while thyroid hormone receptor-associated protein 3 (thrap3) expression tended to increase in the gonad after T and E2 treatments. In the brain, somatostatin 1, tandem duplicate 2 (sst1.2) expression increased with the treatment of T and E2 (P < 0.05), while growth hormone-releasing hormone (ghrh) expression decreased. E2 and T had different effects on growth differentiation factor 8 (gdf8) and insulin-like growth factor-binding protein 7 (igfbp7) expression in the muscle. Expression of gdf8 increased in the treated fishes in contrast to the reduction expression of igfbp7. This study provided important clues for understanding the role of sex steroids in flatfish SSD.


Assuntos
Linguados , Linguado , Animais , Estradiol/metabolismo , Testosterona/metabolismo , Fator de Crescimento Insulin-Like I/genética , Leptina/metabolismo , Miostatina/metabolismo , Receptor beta de Estrogênio/metabolismo , Desmosterol/metabolismo , Hormônios Esteroides Gonadais/metabolismo , Linguado/metabolismo , Hormônio Liberador de Hormônio do Crescimento , Peixes/metabolismo , Língua/metabolismo , Somatostatina , Receptores dos Hormônios Tireóideos , Oxirredutases/metabolismo , Linguados/genética , Mamíferos/metabolismo
11.
BMC Oral Health ; 22(1): 416, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36127648

RESUMO

BACKGROUND: Enterococcus faecalis (E. faecalis) plays an important role in the failure of root canal treatment and refractory periapical periodontitis. As an important virulence factor of E. faecalis, extracellular polysaccharide (EPS) serves as a matrix to wrap bacteria and form biofilms. The homologous rnc gene, encoding Ribonuclease III, has been reported as a regulator of EPS synthesis. In order to develop novel anti-biofilm targets, we investigated the effects of the rnc gene on the biological characteristics of E. faecalis, and compared the biofilm tolerance towards the typical root canal irrigation agents and traditional Chinese medicine fluid Pudilan. METHODS: E. faecalis rnc gene overexpression (rnc+) and low-expression (rnc-) strains were constructed. The growth curves of E. faecalis ATCC29212, rnc+, and rnc- strains were obtained to study the regulatory effect of the rnc gene on E. faecalis. Scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM), and crystal violet staining assays were performed to evaluate the morphology and composition of E. faecalis biofilms. Furthermore, the wild-type and mutant biofilms were treated with 5% sodium hypochlorite (NaOCl), 2% chlorhexidine (CHX), and Pudilan. The residual viabilities of E. faecalis biofilms were evaluated using crystal violet staining and colony counting assays. RESULTS: The results demonstrated that the rnc gene could promote bacterial growth and EPS synthesis, causing the EPS-barren biofilm morphology and low EPS/bacteria ratio. Both the rnc+ and rnc- biofilms showed increased susceptibility to the root canal irrigation agents. The 5% NaOCl group showed the highest biofilm removing effect followed by Pudilan and 2% CHX. The colony counting results showed almost complete removal of bacteria in the 5% NaOCl, 2% CHX, and Chinese medicine agents' groups. CONCLUSIONS: This study concluded that the rnc gene could positively regulate bacterial proliferation, EPS synthesis, and biofilm formation in E. faecalis. The rnc mutation caused an increase in the disinfectant sensitivity of biofilm, indicating a potential anti-biofilm target. In addition, Pudilan exhibited an excellent ability to remove E. faecalis biofilm.


Assuntos
Desinfetantes , Enterococcus faecalis , Clorexidina/farmacologia , Desinfecção , Enterococcus faecalis/genética , Violeta Genciana/farmacologia , Humanos , Ribonuclease III/farmacologia , Hipoclorito de Sódio/farmacologia , Fatores de Virulência/farmacologia
12.
Caries Res ; 55(5): 534-545, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34348276

RESUMO

Streptococcus mutans is known as the crucial pathogen of human dental caries, owing to its contribution to the biofilm development via the capacity of synthesizing exopolysaccharide (EPS), which mainly compose of α-glycosidic bond and ß-glycosidic bond. ß-glycosidic bond is less flexible than α-glycosidic bond because of differences between their configurational properties. Previous studies have shown that the rnc gene is implicated in the EPS formation and the cariogenicity of S. mutans. However, the effects of rnc on the microstructure of EPS have been not well-understood yet. Here, we further investigated how the rnc gene worked to modulate microstructural properties of the extracellular polysaccharide of S. mutans using glycomics methods. The gas chromatography-mass spectrometer showed that the proportion of glucose was decreased in water-soluble EPS and galactose was absent in water-insoluble EPS from the S. mutans rnc-deficient strain (Smurnc), compared with the isogenic wild-type strain (UA159). The composition of functional groups and the displacement of hydrogen bond were analyzed by infrared radiation and 1H nuclear magnetic resonance, respectively. In addition, phenotypic modulation of the biofilm matrix was assessed by microscopy. We found that the EPS of UA159 and the rnc overexpression strain (Smurnc+) mainly consisted of ß-glycosidic bonds. Conversely, the EPS of Smurnc were made up of mostly α-glycosidic bonds, leading to the attenuation of biofilm biomass and bacterial adhesion. Furthermore, the existence of ß-glycosidic bond was verified by enzyme digestion. Collectively, the rnc gene modulates the conversion of ß-glycosidic bonds, which may play important roles in regulating the micromolecule structure of the EPS matrix, thus affecting the characteristics of S. mutans biofilm. These data illustrate that ß-glycosidic bonds mediated by rnc may be potential targets for the prevention and treatment of dental caries.


Assuntos
Cárie Dentária , Streptococcus mutans , Aderência Bacteriana , Biofilmes , Humanos , Monossacarídeos , Streptococcus mutans/genética
13.
Periodontol 2000 ; 82(1): 214-224, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31850631

RESUMO

The susceptibility and severity of periodontal diseases is made more severe by diabetes, with the impact on the disease process inversely proportional to the level of glycemic control. Although type 1 diabetes mellitus and type 2 diabetes mellitus have different etiologies, and their impact on bone is not identical, they share many of the same complications. Studies in animals and humans agree that both forms of diabetes increase inflammatory events in periodontal tissue, impair new bone formation, and increase expression of RANKL in response to bacterial challenge. High levels of glucose, reactive oxygen species, and advanced glycation end-products are found in the periodontium of diabetic individuals and lead to increased activation of nuclear factor-kappa B and expression of inflammatory cytokines such as tumor necrosis factor and interleukin-1. Studies in animals, moreover, suggest that there are multiple cell types in periodontal tissues that are affected by diabetes, including leukocytes, vascular cells, mesenchymal stem cells, periodontal ligament fibroblasts, osteoblasts, and osteocytes. The etiology of periodontal disease involves the host response to bacterial challenge that is affected by diabetes, which increases the expression of RANKL and reduces coupled bone formation. In addition, the inflammatory response also modifies the oral microbiota to render it more pathogenic, as demonstrated by increased inflammation and bone loss in animals where bacteria are transferred from diabetic donors to germ-free hosts compared with transfer from normoglycemic donors. This approach has the advantage of not relying upon limited knowledge of the specific bacterial taxa to determine pathogenicity, and examines the overall impact of the microbiota rather than the presumed pathogenicity of a few bacterial groups. Thus, animal studies have provided new insights into pathogenic mechanisms that identify cause-and-effect relationships that are difficult to perform in human studies.


Assuntos
Diabetes Mellitus Tipo 2 , Doenças Periodontais , Periodontite , Animais , Citocinas , Humanos , Periodonto
14.
Genet Sel Evol ; 52(1): 49, 2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32811444

RESUMO

BACKGROUND: Edwardsiella tarda causes acute symptoms with ascites in Japanese flounder (Paralichthys olivaceus) and is a major problem for China's aquaculture sector. Genomic selection (GS) has been widely adopted in breeding industries because it shortens generation intervals and results in the selection of individuals that have great breeding potential with high accuracy. Based on an artificial challenge test and re-sequenced data of 1099 flounders, the aims of this study were to estimate the genetic parameters of resistance to E. tarda in Japanese flounder and to evaluate the accuracy of single-step GBLUP (ssGBLUP), weighted ssGBLUP (WssGBLUP), and BayesB for improving resistance to E. tarda by using three subsets of pre-selected single nucleotide polymorphisms (SNPs). In addition, SNPs that are associated with this trait were identified using a single-SNP genome-wide association study (GWAS) and WssGBLUP. RESULTS: We estimated a heritability of 0.13 ± 0.02 for resistance to E. tarda in Japanese flounder. One million SNPs at fixed intervals were selected from 4,978,724 SNPs that passed quality controls. GWAS identified significant SNPs on chromosomes 14 and 24. WssGBLUP revealed that the putative quantitative trait loci on chromosomes 1 and 14 contained SNPs that explained more than 1% of the genetic variance. Three 50 k-SNP subsets were pre-selected based on different criteria. Compared with pedigree-based prediction (ABLUP), the three genomic methods evaluated resulted in at least 7.7% greater accuracy of predictions. The accuracy of these genomic prediction methods was almost unchanged when pre-selected trait-related SNPs were used for prediction. CONCLUSIONS: Resistance to E. tarda in Japanese flounder has a low heritability. GWAS and WssGBLUP revealed that the genetic architecture of this trait is polygenic. Genomic prediction of breeding values performed better than ABLUP. It is feasible to implement genomic selection to increase resistance to E. tarda in Japanese flounder with 50 k SNPs. Based on the criteria used here, pre-selection of SNPs was not beneficial and other criteria for pre-selection should be considered.


Assuntos
Cruzamento/métodos , Resistência à Doença , Infecções por Enterobacteriaceae/genética , Doenças dos Peixes/genética , Linguado/genética , Estudo de Associação Genômica Ampla/métodos , Polimorfismo de Nucleotídeo Único , Animais , Teorema de Bayes , Cromossomos/genética , Edwardsiella tarda/patogenicidade , Infecções por Enterobacteriaceae/veterinária , Linguado/microbiologia , Linhagem , Locos de Características Quantitativas , Característica Quantitativa Herdável
15.
Environ Geochem Health ; 41(3): 1405-1417, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30483920

RESUMO

Brick tea contains high concentration of fluoride. The aim of the present work was to explore whether and how the brick tea is a risk factor for dental caries and dental fluorosis among Tibetan children in Ganzi. A cross-sectional study was conducted with 368 12-year-old Tibetan children in Ganzi. Dental caries was measured by DMFT index, and dental fluorosis severity was measured by Dean's Index. Community Fluorosis Index was used to estimate public health significance of dental fluorosis. Oral health-related behaviors and awareness, dietary habits and socioeconomic status were determined by a questionnaire. Bivariate and multivariate analyses were used to determine risk factors associated with dental caries and dental fluorosis. Dental caries prevalence was 37.50%, mean DMFT was 0.84 ± 1.53, while dental fluorosis prevalence was 62.23%. Community Fluorosis Index was 1.35, indicating a medium prevalent strength of dental fluorosis. Dental fluorosis was associated with mother's regular consumption of brick tea and residence altitude, and dental caries was associated with mother's regular consumption of brick tea. Mother's regular consumption of brick tea was a risk factor for both dental fluorosis and dental caries among children. Reducing mother's brick tea consumption during pregnancy and lactation may improve oral health status of their children.


Assuntos
Cárie Dentária/etiologia , Fluorose Dentária/etiologia , Chá/efeitos adversos , Altitude , Criança , Estudos Transversais , Cárie Dentária/epidemiologia , Feminino , Fluorose Dentária/epidemiologia , Humanos , Masculino , Exposição Materna , Análise Multivariada , Prevalência , Fatores de Risco , Fatores Socioeconômicos , Inquéritos e Questionários , Tibet/epidemiologia
16.
BMC Oral Health ; 19(1): 102, 2019 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-31170956

RESUMO

BACKGROUND: The aim of the current study was to explore the factors influencing dental caries among 3-5-year-old children in Sichuan Province and the interrelationship between these factors using structural equation modelling (SEM). METHODS: A cross-sectional study was conducted among 2746 3-5-year-old children in Sichuan Province. Examination of caries was conducted on all children and a questionnaire was answered by the children's caregiver. SEM alternative models were constructed to interpret the intricate relationships between socio-economic status (SES), caregiver's oral health knowledge, attitudes, children's oral health behaviours and children's dental caries. RESULT: The results showed that dental caries were significantly associated with dietary behaviours (ß = 0.11, SE = 0.03, P = 0.001, BC 95% CI =0.05/0.18) and SES (ß = - 0.17, SE = 0.03, P<0.001, BC 95% CI = -0.23/- 0.10) directly, While the indirect effect of SES on dmft is in an opposite direction (ß = 0.08, SE = 0.02, BC 95% CI = 0.04/0.12). CONCLUSION: We found that unhealthy dietary behaviours increased the prevalence of dental caries. However, oral health knowledge and attitude failed to affect dietary behaviour in this model. This result warns that oral health education should strengthen feeding-related knowledge. Meanwhile, it also reminds that it is easier known than done. Future oral health education should focus on exploring a more effective way for the public to turn knowledge into action.


Assuntos
Cárie Dentária/epidemiologia , Criança , Pré-Escolar , Estudos Transversais , Índice CPO , Humanos , Análise de Classes Latentes , Saúde Bucal , Prevalência , Classe Social
17.
Fish Shellfish Immunol ; 72: 436-442, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29154943

RESUMO

Numerous studies suggest R-spondins (Rspos) plays a role in mammalian sex development and differentiation by activating WNT signaling pathways. However, Rspos are frequently less reported in teleosts. In this study, a molecular characterization and expression analysis was conducted with a new rspondin member in the Chinese tongue sole, rspondin2-like (rspo2l). The length of rspo2l cDNA is 1251 bp with 732 bp of coding sequence. A qRT-PCR analysis revealed that the transcription of rspo2l was distributed in various tissues, with high transcription levels in the liver, skin, and gills which might indicate a possible role in immunity. We next examined a time-course of transcription levels in four immune tissues (gill, liver, spleen, and kidney) after Vibrio harveyi challenge. It was found that rspo2l was up-regulated in the gills, spleen, and kidney and down-regulated in the liver, and the greatest responses occurred at 24 and 48 h after bacterial challenge. An assessment of ß-catenin, the key regulator of the canonical WNT signaling pathway, at different time points in four immune organs revealed that its transcription profile was similar to that of rspo2l after bacterial challenge. The results suggest that tongue sole rspo2l might play a role in immune responses after bacterial challenge, while the potential link with the WNT signaling pathway still requires further investigation. This is the first report about the involvement of rspondins in fish immune responses.


Assuntos
Doenças dos Peixes/imunologia , Linguados/genética , Linguados/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica , Filogenia , Alinhamento de Sequência/veterinária , Vibrio/fisiologia , Vibrioses/imunologia , Vibrioses/veterinária
18.
Caries Res ; 52(5): 347-358, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29510413

RESUMO

Streptococcus mutans is an important factor in the etiology and pathogenesis of dental caries, largely owing to its ability to form a stable biofilm. Previous animal studies have indicated that rnc could decrease the amount of sulcal caries, and that the downregulation of cariogenicity might be due to its capacity to disrupt biofilm formation. However, the biofunctions by which rnc is involved in biofilm formation remain to be elucidated. In this study, we further investigate the role of rnc based on the study of mature biofilm. Scanning electron microscopy and the crystal violet assay were used to detect the biofilm forming ability. The production and distribution of exopolysaccharides within biofilm was analyzed by exopolysaccharide staining. Gel permeation chromatography was used to perform molecular weight assessment. Its adhesion force was measured by atomic force microscopy. The expression of biofilm formation-associated genes was analyzed at the mRNA level by qPCR. Here, we found that rnc could occur and function in biofilm formation by assembling well-structured, exopolysaccharide-encased, stable biofilms in S. mutans. The weakened biofilm forming ability of rnc-deficient strains was associated with the reduction of exopolysaccharide production and bacterial adhesion. Over all, these data illustrate an interesting situation in which an unappreciated regulatory gene acquired for virulence, rnc, most likely has been coopted as a potential regulator of biofilm formation in S. mutans. Further characterization of rnc may lead to the identification of a possible pathogenic biofilm-specific treatment for dental caries.


Assuntos
Biofilmes/crescimento & desenvolvimento , Genes Bacterianos/fisiologia , Streptococcus mutans/genética , Cromatografia em Gel , Genes Bacterianos/genética , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Reação em Cadeia da Polimerase em Tempo Real , Streptococcus mutans/crescimento & desenvolvimento
20.
Animals (Basel) ; 14(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38275772

RESUMO

The high proportion of males in C. semilaevis hinders their industrial development. The genetic ZW individual can become a pseudomale by sex reversal. And the pseudomale can produce Z-sperm (with epigenetic information to cause sex reversal) while W-sperm is absent, which leads to an even higher male proportion in offspring. Recently, with the development of transcriptomic technologies, research on spermatogenesis in C. semilaevis has been focused on the ubiquitination pathway. In this study, we analyzed the function of the ubiquitin ligase rnf34 gene on the Z chromosome. A qPCR experiment showed that its expression level in the gonad was the highest among different tissues. In the ovary, the expression gradually increased with development from 40 days post-hatching (dph) to 1.5 years post-hatching (yph). In the testis, rnf34 showed increased expression from 40 dph to 6 months post-hatching (mpf) and stabilized up until 1.5 ypf. In situ hybridization showed that the mRNA of rnf34 was mainly distributed in the germ cells of the testis and the ovary. In vivo siRNA-mediated knockdown of the rnf34 gene in male fish affected the expression of a series of genes related to sex differentiation and spermatogenesis. These results provide genetic data on the molecular mechanisms of gonadal development and spermatogenesis in C. semilaevis.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa