Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 300(3): 105774, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38382672

RESUMO

Gum arabic (GA) is widely used as an emulsion stabilizer and edible coating and consists of a complex carbohydrate moiety with a rhamnosyl-glucuronate group capping the non-reducing ends. Enzymes that can specifically cleave the glycosidic chains of GA and modify their properties are valuable for structural analysis and industrial application. Cryogenic X-ray crystal structure of GA-specific L-rhamnose-α-1,4-D-glucuronate lyase from Fusarium oxysporum (FoRham1), belonging to the polysaccharide lyase (PL) family 42, has been previously reported. To determine the specific reaction mechanism based on its hydrogen-containing enzyme structure, we performed joint X-ray/neutron crystallography of FoRham1. Large crystals were grown in the presence of L-rhamnose (a reaction product), and neutron and X-ray diffraction datasets were collected at room temperature at 1.80 and 1.25 Å resolutions, respectively. The active site contained L-rhamnose and acetate, the latter being a partial analog of glucuronate. Incomplete H/D exchange between Arg166 and acetate suggested that a strong salt-bridge interaction was maintained. Doubly deuterated His105 and deuterated Tyr150 supported the interaction between Arg166 and the acetate. The unique hydrogen-rich environment functions as a charge neutralizer for glucuronate and stabilizes the oxyanion intermediate. The NE2 atom of His85 was deprotonated and formed a hydrogen bond with the deuterated O1 hydroxy of L-rhamnose, indicating the function of His85 as the base/acid catalyst for bond cleavage via ß-elimination. Asp83 functions as a pivot between the two catalytic histidine residues by bridging them. This His-His-Asp structural motif is conserved in the PL 24, 25, and 42 families.


Assuntos
Fusarium , Polissacarídeo-Liases , Humanos , Acetatos , Cristalografia por Raios X , Ácido Glucurônico/química , Hidrogênio , Liases , Polissacarídeo-Liases/química , Ramnose/química , Fusarium/enzimologia
2.
J Biol Chem ; 299(1): 102763, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36463961

RESUMO

PcyA, a ferredoxin-dependent bilin pigment reductase, catalyzes the site-specific reduction of the two vinyl groups of biliverdin (BV), producing phycocyanobilin. Previous neutron crystallography detected both the neutral BV and its protonated form (BVH+) in the wildtype (WT) PcyA-BV complex, and a nearby catalytic residue Asp105 was found to have two conformations (protonated and deprotonated). Semiempirical calculations have suggested that the protonation states of BV are reflected in the absorption spectrum of the WT PcyA-BV complex. In the previously determined absorption spectra of the PcyA D105N and I86D mutants, complexed with BV, a peak at 730 nm, observed in the WT, disappeared and increased, respectively. Here, we performed neutron crystallography and quantum chemical analysis of the D105N-BV and I86D-BV complexes to determine the protonation states of BV and the surrounding residues and study the correlation between the absorption spectra and protonation states around BV. Neutron structures elucidated that BV in the D105N mutant is in a neutral state, whereas that in the I86D mutant is dominantly in a protonated state. Glu76 and His88 showed different hydrogen bonding with surrounding residues compared with WT PcyA, further explaining why D105N and I86D have much lower activities for phycocyanobilin synthesis than the WT PcyA. Our quantum mechanics/molecular mechanics calculations of the absorption spectra showed that the spectral change in D105N arises from Glu76 deprotonation, consistent with the neutron structure. Collectively, our findings reveal more mechanistic details of bilin pigment biosynthesis.


Assuntos
Pigmentos Biliares , Oxirredutases , Pigmentos Biliares/biossíntese , Pigmentos Biliares/química , Biliverdina/química , Catálise , Cristalografia , Oxirredutases/genética , Oxirredutases/química , Mutação
3.
Proc Natl Acad Sci U S A ; 117(20): 10818-10824, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32371483

RESUMO

Recent advances in neutron crystallographic studies have provided structural bases for quantum behaviors of protons observed in enzymatic reactions. Thus, we resolved the neutron crystal structure of a bacterial copper (Cu) amine oxidase (CAO), which contains a prosthetic Cu ion and a protein-derived redox cofactor, topa quinone (TPQ). We solved hitherto unknown structures of the active site, including a keto/enolate equilibrium of the cofactor with a nonplanar quinone ring, unusual proton sharing between the cofactor and the catalytic base, and metal-induced deprotonation of a histidine residue that coordinates to the Cu. Our findings show a refined active-site structure that gives detailed information on the protonation state of dissociable groups, such as the quinone cofactor, which are critical for catalytic reactions.


Assuntos
Amina Oxidase (contendo Cobre)/química , Proteínas de Bactérias/química , Quinonas/química , Domínio Catalítico , Coenzimas/química , Difração de Nêutrons , Prótons
4.
Proc Natl Acad Sci U S A ; 116(40): 19945-19951, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31533957

RESUMO

Cytochrome c oxidase (CcO), a membrane enzyme in the respiratory chain, catalyzes oxygen reduction by coupling electron and proton transfer through the enzyme with a proton pump across the membrane. In all crystals reported to date, bovine CcO exists as a dimer with the same intermonomer contacts, whereas CcOs and related enzymes from prokaryotes exist as monomers. Recent structural analyses of the mitochondrial respiratory supercomplex revealed that CcO monomer associates with complex I and complex III, indicating that the monomeric state is functionally important. In this study, we prepared monomeric and dimeric bovine CcO, stabilized using amphipol, and showed that the monomer had high activity. In addition, using a newly synthesized detergent, we determined the oxidized and reduced structures of monomer with resolutions of 1.85 and 1.95 Å, respectively. Structural comparison of the monomer and dimer revealed that a hydrogen bond network of water molecules is formed at the entry surface of the proton transfer pathway, termed the K-pathway, in monomeric CcO, whereas this network is altered in dimeric CcO. Based on these results, we propose that the monomer is the activated form, whereas the dimer can be regarded as a physiological standby form in the mitochondrial membrane. We also determined phospholipid structures based on electron density together with the anomalous scattering effect of phosphorus atoms. Two cardiolipins are found at the interface region of the supercomplex. We discuss formation of the monomeric CcO, dimeric CcO, and supercomplex, as well as their role in regulation of CcO activity.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/química , Mitocôndrias Cardíacas/enzimologia , Animais , Cardiolipinas/química , Bovinos , Cristalografia por Raios X , Digitonina/química , Transporte de Elétrons , Complexo I de Transporte de Elétrons/química , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Membranas Mitocondriais/enzimologia , Conformação Molecular , Oxirredução , Oxigênio/química , Fosfolipídeos/química , Fósforo/química , Ligação Proteica , Conformação Proteica , Multimerização Proteica
5.
J Biol Chem ; 293(38): 14868-14879, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30077971

RESUMO

Cytochrome c oxidase (CcO) is the terminal oxidase of cellular respiration, reducing O2 to water and pumping protons. X-ray structural features have suggested that CcO pumps protons via a mechanism involving electrostatic repulsions between pumping protons in the hydrogen-bond network of a proton-conducting pathway (the H-pathway) and net positive charges created upon oxidation of an iron site, heme a (Fe a2+), for reduction of O2 at another iron site, heme a3 (Fe a32+). The protons for pumping are transferred to the hydrogen-bond network from the N-side via the water channel of the H-pathway. Back-leakage of protons to the N-side is thought to be blocked by closure of the water channel. To experimentally test this, we examined X-ray structures of the azide-bound, oxidized bovine CcO and found that an azide derivative (N3--Fe a33+, CuB2+-N3-) induces a translational movement of the heme a3 plane. This was accompanied by opening of the water channel, revealing that Fe a3 and the H-pathway are tightly coupled. The channel opening in the oxidized state is likely to induce back-leakage of pumping protons, which lowers the proton level in the hydrogen-bond network during enzymatic turnover. The proton level decrease weakens the electron affinity of Fe a , if Fe a electrostatically interacts with protons in the hydrogen-bond network. The previously reported azide-induced redox-potential decrease in Fe a supports existence of the electrostatic interaction. In summary, our results indicate that the H-pathway is critical for CcO's proton-pumping function.


Assuntos
Azidas/química , Cristalografia por Raios X/métodos , Complexo IV da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Bombas de Próton/metabolismo , Animais , Bovinos , Heme/análogos & derivados , Heme/metabolismo , Ligação de Hidrogênio , Ferro/metabolismo , Oxirredução
6.
J Biol Chem ; 291(46): 23882-23894, 2016 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-27605664

RESUMO

Bovine heart cytochrome c oxidase (CcO) pumps four proton equivalents per catalytic cycle through the H-pathway, a proton-conducting pathway, which includes a hydrogen bond network and a water channel operating in tandem. Protons are transferred by H3O+ through the water channel from the N-side into the hydrogen bond network, where they are pumped to the P-side by electrostatic repulsion between protons and net positive charges created at heme a as a result of electron donation to O2 bound to heme a3 To block backward proton movement, the water channel remains closed after O2 binding until the sequential four-proton pumping process is complete. Thus, the hydrogen bond network must collect four proton equivalents before O2 binding. However, a region with the capacity to accept four proton equivalents was not discernable in the x-ray structures of the hydrogen bond network. The present x-ray structures of oxidized/reduced bovine CcO are improved from 1.8/1.9 to 1.5/1.6 Å resolution, increasing the structural information by 1.7/1.6 times and revealing that a large water cluster, which includes a Mg2+ ion, is linked to the H-pathway. The cluster contains enough proton acceptor groups to retain four proton equivalents. The redox-coupled x-ray structural changes in Glu198, which bridges the Mg2+ and CuA (the initial electron acceptor from cytochrome c) sites, suggest that the CuA-Glu198-Mg2+ system drives redox-coupled transfer of protons pooled in the water cluster to the H-pathway. Thus, these x-ray structures indicate that the Mg2+-containing water cluster is the crucial structural element providing the effective proton pumping in bovine CcO.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/química , Magnésio/química , Modelos Moleculares , Bombas de Próton/química , Animais , Bovinos , Cristalografia por Raios X , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Magnésio/metabolismo , Estrutura Quaternária de Proteína , Bombas de Próton/metabolismo , Relação Estrutura-Atividade
7.
Nat Methods ; 11(7): 734-6, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24813624

RESUMO

We report a method of femtosecond crystallography for solving radiation damage-free crystal structures of large proteins at sub-angstrom spatial resolution, using a large single crystal and the femtosecond pulses of an X-ray free-electron laser (XFEL). We demonstrated the performance of the method by determining a 1.9-Å radiation damage-free structure of bovine cytochrome c oxidase, a large (420-kDa), highly radiation-sensitive membrane protein.


Assuntos
Cristalografia/métodos , Complexo IV da Cadeia de Transporte de Elétrons/química , Lasers , Animais , Bovinos , Complexo IV da Cadeia de Transporte de Elétrons/efeitos da radiação
8.
Acta Crystallogr D Biol Crystallogr ; 67(Pt 8): 742-4, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21795816

RESUMO

Fully oxidized cytochrome c oxidase (CcO) under enzymatic turnover is capable of pumping protons, while fully oxidized CcO as isolated is not able to do so upon one-electron reduction. The functional difference is expected to be a consequence of structural differences: [Fe(3+)-OH(-)] under enzymatic turnover versus [Fe(3+)-O(2)(2-)-Cu(2+)] for the as-isolated CcO. However, the electron density for O(2)(2-) is equally assignable to Cl(-). An anomalous dispersion analysis was performed in order to conclusively demonstrate the absence of Cl(-) between the Fe(3+) and Cu(2+). Thus, the peroxide moiety receives electron equivalents from cytochrome c without affecting the oxidation states of the metal sites. The metal-site reduction is coupled to the proton pump.


Assuntos
Cloro/química , Cobre/química , Complexo IV da Cadeia de Transporte de Elétrons/química , Ferro/química , Oxigênio/química , Modelos Moleculares , Oxirredução , Domínios e Motivos de Interação entre Proteínas
9.
BBA Adv ; 1: 100009, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37082008

RESUMO

Cytochrome c oxidase (CcO) in the respiratory chain catalyzes oxygen reduction by coupling electron and proton transfer through the enzyme and proton pumping across the membrane. Although the functional unit of CcO is monomeric, mitochondrial CcO forms a monomer and a dimer, as well as a supercomplex with respiratory complexes I and III. A recent study showed that dimeric CcO has lower activity than monomeric CcO and proposed that dimeric CcO is a standby form for enzymatic activation in the mitochondrial membrane. Other studies have suggested that the dimerization is dependent on specifically arranged lipid molecules, peptide segments, and post-translationally modified amino acid residues. To re-examine the structural basis of dimerization, we improved the resolution of the crystallographic structure to 1.3 Å by optimizing the method for cryoprotectant soaking. The observed electron density map revealed many weakly bound detergent and lipid molecules at the interface of the dimer. The dimer interface also contained hydrogen bonds with tightly bound cholate molecules, hydrophobic interactions between the transmembrane helices, and a Met-Met interaction between the extramembrane regions. These results imply that binding of physiological ligands structurally similar to cholate could trigger dimerization in the mitochondrial membrane and that non-specifically bound lipid molecules at the transmembrane surface between monomers support the stabilization of the dimer. The weak interactions involving the transmembrane helices and extramembrane regions may play a role in positioning each monomer at the correct orientation in the dimer.

10.
Acta Crystallogr D Struct Biol ; 76(Pt 11): 1050-1056, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33135676

RESUMO

Transthyretin (TTR) is one of more than 30 amyloidogenic proteins, and the amyloid fibrils found in patients afflicted with ATTR amyloidosis are composed of this protein. Wild-type TTR amyloids accumulate in the heart in senile systemic amyloidosis (SSA). ATTR amyloidosis occurs at a much younger age than SSA, and the affected individuals carry a TTR mutant. The naturally occurring amyloidogenic Y116S TTR variant forms more amyloid fibrils than wild-type TTR. Thus, the Y116S mutation reduces the stability of the TTR structure. A neutron diffraction experiment on Y116S TTR was performed to elucidate the mechanism of the changes in structural stability between Y116S variant and wild-type TTR through structural comparison. Large crystals of the Y116S variant were grown under optimal crystallization conditions, and a single 2.4 mm3 crystal was ultimately obtained. This crystal was subjected to time-of-flight (TOF) neutron diffraction using the IBARAKI biological crystal diffractometer (iBIX) at the Japan Proton Accelerator Research Complex, Tokai, Japan (J-PARC). A full data set for neutron structure analysis was obtained in 14 days at an operational accelerator power of 500 kW. A new integration method was developed and showed improved data statistics; the new method was applied to the reduction of the TOF diffraction data from the Y116S variant. Data reduction was completed and the integrated intensities of the Bragg reflections were obtained at 1.9 Šresolution for structure refinement. Moreover, X-ray diffraction data at 1.4 Šresolution were obtained for joint neutron-X-ray refinement.


Assuntos
Modelos Moleculares , Difração de Nêutrons/métodos , Pré-Albumina , Análise de Dados , Humanos , Mutação , Pré-Albumina/química , Pré-Albumina/genética
11.
Methods Enzymol ; 634: 101-123, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32093829

RESUMO

The IBARAKI Biological Crystal Diffractometer (iBIX) has been available for use at MLF (Material and Life Science Facility) in J-PARC (Japan Proton Accelerator Research Complex) since 2008. The development in state-of-the-art detector systems could enable iBIX to become one of the highest-performance neutron single-crystal diffractometers in the world. Here, together with other various developments, such as data reduction software, crystal growth, and new techniques in measurement coupled analysis, we provided new hydrogen and water structural data of several proteins and macromolecules. Although the proton power at MLF has not yet reached its planned maximum (1MW), a more powerful neutron source will be soon needed for neutron protein crystallography. A future idea is also proposed and discussed in this article.


Assuntos
Difração de Nêutrons , Proteínas , Cristalização , Cristalografia , Cristalografia por Raios X , Nêutrons
12.
Acta Crystallogr D Struct Biol ; 74(Pt 11): 1041-1052, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30387763

RESUMO

The STARGazer data-processing software is used for neutron time-of-flight (TOF) single-crystal diffraction data collected using the IBARAKI Biological Crystal Diffractometer (iBIX) at the Japan Proton Accelerator Research Complex (J-PARC). This software creates hkl intensity data from three-dimensional (x, y, TOF) diffraction data. STARGazer is composed of a data-processing component and a data-visualization component. The former is used to calculate the hkl intensity data. The latter displays the three-dimensional diffraction data with searched or predicted peak positions and is used to determine and confirm integration regions. STARGazer has been developed to make it easier to use and to obtain more accurate intensity data. For example, a profile-fitting method for peak integration was developed and the data statistics were improved. STARGazer and its manual, containing installation and data-processing components, have been prepared and provided to iBIX users. This article describes the status of the STARGazer data-processing software and its data-processing algorithms.


Assuntos
Algoritmos , Difração de Nêutrons/métodos , Nêutrons , Software , Cristalografia por Raios X
13.
Sci Rep ; 6: 36628, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27905404

RESUMO

We developed and employed a profile fitting method for the peak integration of neutron time-of-flight diffraction data collected by the IBARAKI Biological Crystal Diffractometer (iBIX) at the Japan Proton Accelerator Research Complex (J-PARC) for protein ribonuclease A and α-thrombin single crystals. In order to determine proper fitting functions, four asymmetric functions were evaluated using strong intensity peaks. A Gaussian convolved with two back-to-back exponentials was selected as the most suitable fitting function, and a profile fitting algorithm for the integration method was developed. The intensity and structure refinement data statistics of the profile fitting method were compared to those of the summation integration method. It was clearly demonstrated that the profile fitting method provides more accurate integrated intensities and model structures than the summation integration method at higher resolution shells. The integration component with the profile fitting method has already been implemented in the iBIX data processing software STARGazer and its user manual has been prepared.


Assuntos
Modelos Moleculares , Difração de Nêutrons/métodos , Ribonuclease Pancreático/química , Espalhamento a Baixo Ângulo , Trombina/química , Animais , Bovinos
14.
Acta Crystallogr F Struct Biol Commun ; 71(Pt 6): 726-30, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26057802

RESUMO

The X-ray structure of cyanide-bound bovine heart cytochrome c oxidase in the fully oxidized state was determined at 2.0 Å resolution. The structure reveals that the peroxide that bridges the two metals in the fully oxidized state is replaced by a cyanide ion bound in a nearly symmetric end-on fashion without significantly changing the protein conformation outside the two metal sites.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/química , Mitocôndrias Cardíacas/química , Miocárdio/química , Cianeto de Potássio/química , Animais , Sítios de Ligação , Bovinos , Cristalização , Cristalografia por Raios X , Complexo IV da Cadeia de Transporte de Elétrons/isolamento & purificação , Mitocôndrias Cardíacas/enzimologia , Modelos Moleculares , Miocárdio/enzimologia , Oxirredução , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa