Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 38(6): 2055-2065, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35120293

RESUMO

Particle separation from fluid interfaces is one of the major challenges due to the large capillary energy associated with particle adsorption. Previous approaches rely on physicochemical modification or tuning the electrostatic action. Here, we show experimentally that particle separation can be achieved by fast dynamics of drop impact on soap films. When a droplet wrapped with particles (liquid marble) collides with a soap film, it undergoes bouncing and coalescence, stripping and viscous separation, or tunneling through the film. Despite the violence of splashing events, the process robustly yields the stripping in a tunable range. This viscous separation is supported by the transfer front of dynamic contact among the film, particle crust, and drop and can be well controlled in a deterministic manner by selectable impact parameters. By extensive experiments, together with thermodynamic analysis, we disclose that the separation thresholds depend on the energy competition between the kinetic energy, the increased surface energy, and the viscous dissipation. The mechanical cracking of the particle crust arises from the complex coupling between interfacial stress and viscous forces. This study is of potential benefit in soft matter research and also permits the study of a drop with colloid and surface chemistry.

2.
J Colloid Interface Sci ; 629(Pt B): 644-653, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36182756

RESUMO

HYPOTHESIS: Nanostructured materials are widely used for solar energy harvesting and conversion due to their excellent photothermal properties. It is generally accepted that the better the light absorption ability, the better the photothermal conversion efficiency. EXPERIMENT: A series of experiments in solar evaporation of liquid marbles (LMs) by coating the droplets with Fe3O4, Ni nanoparticles (NPs) and carbon nanotubes (CNTs) are conducted. FINDINGS: Conversely, we found that the surface roughness of solar absorber plays a significant role in solar evaporation rather than the light absorption. The results disclose that the Fe3O4 NPs with the lowest absorptivity has the largest roughness on drop surface, while that of CNTs show the opposite properties. The evaporation dynamics of LMs are featured with dome or constant spherical collapse with different roughness. Such dynamic difference arises from the mechanical competition between the capillary force and interparticle interaction. Besides, the strong light-harvesting and near-field radiation enabled by the rough surfaces enhance the solar evaporation. The Fe3O4-LM shows the highest evaporation rate of 6.55 µg/s, which is 1.09 and 1.30 times larger than that of Ni-LM and CNT-LM, respectively. Numerical analysis reveals that the rough surface with stacking arrangement of NPs greatly enhances the light-induced electromagnetic field and heat concentration over the interface, leading to a plasmon-coupling boundary with high temperature for the fast evaporation. Uncovering these properties could be of much help for developments of heatable miniature evaporators or reactors and their counterparts, permitting a broad range of processes with precise temperature and kinetic control.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa