Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(5): e2305631, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37752745

RESUMO

Non-fused electron acceptors have huge advantages in fabricating low-cost organic photovoltaic (OPV) cells. However, morphology control is a challenge as non-fused C─C single bonds bring more molecular conformations. Here, by selecting two typical polymer donors, PBDB-TF and PBQx-TF, the blend morphologies and its impacts on the power conversion efficiencies (PCEs) of non-fused acceptor-based OPV cells are studied. A selenium-containing non-fused acceptor named ASe-5 is designed. The results suggest that PBQx-TF has a lower miscibility with ASe-5 when compared with PBDB-TF. Additionally, the polymer networks may form earlier in the PBQx-TF:ASe-5 blend film due to stronger preaggregation performance, leading to a more obvious phase separation. The PBQx-TF:ASe-5 blend film shows faster charge transfer and suppressed charge recombination. As a result, the PBQx-TF:ASe-5-based device records a good PCE of 14.7% with a higher fill factor (FF) of 0.744, while the PBDB-TF:ASe-5-based device only obtains a moderate PCE of 12.3% with a relatively low FF of 0.662. The work demonstrates that the selection of donors plays a crucial role in controlling the blend morphology and thus improving the PCEs of non-fused acceptor-based OPV cells.

2.
J Am Chem Soc ; 145(25): 13686-13695, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37311087

RESUMO

Low-bandgap materials have achieved rapid development and promoted the enhancement of power conversion efficiencies (PCEs) of organic photovoltaic (OPV) cells. However, the design of wide-bandgap non-fullerene acceptors (WBG-NFAs), required by indoor applications and tandem cells, has been lagging far behind the development of OPV technologies. Here, we designed and synthesized two NFAs named ITCC-Cl and TIDC-Cl by finely optimizing ITCC. In contrast with ITCC and ITCC-Cl, TIDC-Cl can maintain a wider bandgap and a higher electrostatic potential simultaneously. When blending with the donor PB2, the highest dielectric constant is also obtained in TIDC-Cl-based films, enabling efficient charge generation. Therefore, the PB2:TIDC-Cl-based cell possessed a high PCE of 13.8% with an excellent fill factor (FF) of 78.2% under the air mass 1.5G (AM 1.5G) condition. Furthermore, an exciting PCE of 27.1% can be accomplished in the PB2:TIDC-Cl system under the illumination of 500 lux (2700 K light-emitting diode). Combined with the theoretical simulation, the tandem OPV cell based on TIDC-Cl was fabricated and exhibited an excellent PCE of 20.0%.

3.
J Chem Inf Model ; 63(19): 5956-5970, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37724339

RESUMO

Retrosynthesis prediction is crucial in organic synthesis and drug discovery, aiding chemists in designing efficient synthetic routes for target molecules. Data-driven deep retrosynthesis prediction has gained importance due to new algorithms and enhanced computing power. Although existing models show certain predictive power on the USPTO-50K benchmark data set, no one considers the effects of byproducts during the prediction process, which may be due to the lack of byproduct information in the benchmark data set. Here, we propose a novel two-stage retrosynthesis reaction prediction framework based on byproducts called RPBP. First, RPBP predicts the byproduct involved in the reaction based on the product molecule. Then, it handles an end-to-end prediction problem based on the prediction of reactants by product and byproduct. Unlike other methods that first identify the potential reaction center and then predict reactant molecules, RPBP considers additional information from byproducts, such as reaction reagents, conditions, and sites. Interestingly, adding byproducts reduces model learning complexity in natural language processing (NLP). Our RPBP model achieves 54.7% and 66.6% top-1 retrosynthesis prediction accuracy when the reaction class is unknown and known, respectively. It outperforms existing methods for known-class reactions, thanks to the rich chemical information in byproducts. The prediction of four kinase drugs from the literature demonstrates the model's practicality and potential to accelerate drug discovery.

4.
Angew Chem Int Ed Engl ; 62(5): e202214088, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36448216

RESUMO

To modulate the miscibility between donor and acceptor materials both possessing fully non-fused ring structures, a series of electron acceptors (A4T-16, A4T-31 and A4T-32) with different polar functional substituents were synthesized and investigated. The three acceptors show good planarity, high conformational stability, complementary absorption and energy levels with the non-fused polymer donor (PTVT-BT). Among them, A4T-32 possesses the strongest polar functional group and shows the highest surface energy, which facilitates morphological modulation in the bulk heterojunction (BHJ) blend. Benefiting from the proper morphology control method, an impressive power conversion efficiency (PCE) of approaching 16.0 % and a superior fill factor over 0.795 are achieved in the PTVT-BT : A4T-32-based organic photovoltaic cells with superior photoactive materials price advantage, which represent the highest value for the cells based on the non-fused blend films. Notably, this cell maintains ≈84 % of its initial PCE after nearly 2000 h under the continuous simulated 1-sun-illumination. In addition, the flexible PTVT-BT : A4T-32-based cells were fabricated and delivered a decent PCE of 14.6 %. This work provides an effective molecular design strategy for the non-fused non-fullerene acceptors (NFAs) from the aspect of bulk morphology control in fully non-fused BHJ layers, which is crucial for their practical applications.

5.
Angew Chem Int Ed Engl ; 61(37): e202209021, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-35853834

RESUMO

Single-junction organic solar cells (OSCs) have made significant progress in recent years. Innovations in material design and device optimization have improved the power conversion efficiencies to over 19 %. In this Minireview, based on recent advances, we discuss molecular design strategies to tune the absorption spectrum, energy level, and intermolecular aggregation as well as highlight the role of molecular electrostatic potential in decreasing energy loss. Then, we introduce the latest progress in four types of OSCs composed of different donor:acceptor combinations: polymer donor:small-molecule acceptor, all-polymer, all-small-molecule, and small-molecule donor:polymer acceptor. Finally, the challenges of OSCs in practical applications, including material cost, stability, and multi-function integration, are discussed.

6.
Small ; 17(24): e2101133, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34013657

RESUMO

Improving power conversion efficiencies (PCEs) and stability are two main tasks for organic photovoltaic (OPV) cells. In the past few years, although the PCE of the OPV cells has been considerably improved, the research on device stability is limited. Herein, a cross-linkable material, cross-linked [6,6]-phenyl-C61-butyric styryl dendron ester (c-PCBSD), is applied as an interfacial modification layer on the surface of zinc oxide and as the third component into the PBDB-TF:Y6-based OPV cells to enhance photovoltaic performance and long-term stability. The PCE of the OPV cells that underwent the two-step modification increased from 15.1 to 16.1%. In particular, such OPV cells exhibited much better stability under both thermal and air conditions because of the decreased number of interfacial defects and stable interfacial and active layer morphologies. The results demonstrated that the introduction of a cross-linkable fullerene derivative into the interfacial and active layers is a feasible method to improve the PCE and stability of OPV cells.

7.
Acc Chem Res ; 53(4): 822-832, 2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32216329

RESUMO

ConspectusOver the past few years, the development of new materials has contributed to rapid increases in the power conversion efficiencies (PCEs) of organic photovoltaic (OPV) cells to over 17%, showing great potential for the commercialization of this technology in the near future. At this stage, designing new materials with superior performance and low cost simultaneously is of crucial importance. Chlorinated materials are emerging as new stars with very high PCEs, creating a molecular design trend to replace the most popular fluorinated materials. For example, by using chlorinated non-fullerene acceptors, we recently got a record PCE of 17% for single-junction OPV cells. Firmly based on recent advances, herein we focus on the topic of chlorinated OPV materials, aiming to provide a guideline for further molecular design.In this Account, first, on the basis of most fundamental features of the Cl atom, we highlight the features of chlorinated materials compared with their fluorinated counterparts: (1) Chlorination is more efficient than fluorination in modulating the optical and electrical properties of OPV materials. In many cases, chlorinated materials show lower energy levels and broader absorption spectra than their fluorinated counterparts, which contribute higher output voltages and current densities in the resulting photovoltaic devices. (2) Cl has a large atomic size than F. On one hand, enhanced overlap of π electrons is beneficial for enhancing the intermolecular packing and crystalline property and thus improving the charge transport. On the other hand, if Cl is introduced inappropriately in the backbone or side chain, this feature will cause a more twisted π plane and larger steric hindrance, having negative impacts on the photovoltaic performance of the corresponding materials. (3) Importantly, chlorination is usually chemically cheaper in synthesis, which has the potential to decrease the material cost of OPV cells. Then, we provide a concise review of chlorinated OPV materials, including polymeric and small-molecule donors and non-fullerene acceptors. The photovoltaic performance in various types of OPV cells using chlorinated materials, such as single-junction, tandem, semitransparent, and indoor-light photovoltaic cells is also discussed. For instance, ultranarrow-band-gap chlorinated acceptors can be used to construct highly efficient color-semitransparent OPV cells, and the wide-band-gap chlorinated materials show great potential for fabricating indoor-light photovoltaic devices. Finally, we briefly discuss current questions related to chlorinated OPV materials and highlight the significance of chlorination in future development.

8.
Angew Chem Int Ed Engl ; 60(29): 15988-15994, 2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-33932274

RESUMO

Bulk heterojunctions comprising mixed donor (D) and acceptor (A) materials have proven to be the most efficient device structures for organic photovoltaic (OPV) cells. The bulk morphology of such cells plays a key role in charge generation, recombination, and transport, thus determining the device performance. Although numerous studies have discussed the morphology-performance relationship of these cells, the method of designing OPV materials with the desired morphology remains unclear. Herein, guided by molecular electrostatic potential distributions, we have established a connection between the chemical structure and bulk morphology. We show that the molecular orientation at the D-A interface and the domain purity in the blend can be effectively modulated by modifying the functional groups. Enhancing the D-A interaction is beneficial for charge generation. However, the resulting low domain purity and increased charge transfer ratio in its hybridization with the local excitation states lead to severe charge recombination. Fine-tuning the bulk morphology can give balanced charge generation and recombination, which is crucial for further boosting the efficiency of the OPV cells.

9.
Rep Prog Phys ; 83(8): 082601, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32375132

RESUMO

Light absorption generates strongly bound excitons in organic solar cells (OSCs). To obtain efficient charge generation, a large driving force is required, which causes a large energy loss (E loss) and severely hinders the improvement in the power conversion efficiencies (PCEs) of OSCs. Recently, the development of non-fullerene OSCs has seen great success, and the resulting OSCs can yield highly efficient charge generation with a negligible driving force, which raises a fundamental question about how the excitons split into free charges. From a chemical structure perspective, the molecular electrostatic potential differences between donors and acceptors may play a critical role in facilitating charge separation. Although the E loss caused by charge generation has been suppressed, charge recombination, particularly via non-radiative pathways, severely limits further improvements in the PCEs. In OSCs with negligible driving forces, the lowest excited state, a hybrid local exciton-charge transfer state, is believed to have a strong association with the non-radiative E loss. This review discusses the efficient charge generation at low E loss values in highly efficient OSCs and highlights the issues that should be tackled to further improve the PCEs to new levels (∼20%).

10.
Angew Chem Int Ed Engl ; 59(23): 9004-9010, 2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32153106

RESUMO

Decreasing the energy loss is one of the most feasible ways to improve the efficiencies of organic photovoltaic (OPV) cells. Recent studies have suggested that non-radiative energy loss ( E non - rad loss ) is the dominant factor that hinders further improvements in state-of-the-art OPV cells. However, there is no rational molecular design strategy for OPV materials with suppressed E non - rad loss . Herein, taking molecular surface electrostatic potential (ESP) as a quantitative parameter, we establish a general relationship between chemical structure and intermolecular interactions. The results reveal that increasing the ESP difference between donor and acceptor will enhance the intermolecular interaction. In the OPV cells, the enhanced intermolecular interaction will increase the charge-transfer (CT) state ratio in its hybridization with the local exciton state to facilitate charge generation, but simultaneously result in a larger E non - rad loss . These results suggest that finely tuning the ESP of OPV materials is a feasible method to further improve the efficiencies of OPV cells.

11.
J Am Chem Soc ; 141(19): 7743-7750, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31017418

RESUMO

Although significant improvements have been achieved for organic photovoltaic cells (OPVs), the top-performing devices still show power conversion efficiencies far behind those of commercialized solar cells. One of the main reasons is the large driving force required for separating electron-hole pairs. Here, we demonstrate an efficiency of 14.7% in the single-junction OPV by using a new polymer donor PTO2 and a nonfullerene acceptor IT-4F. The device possesses an efficient charge generation at a low driving force. Ultrafast transient absorption measurements probe the formation of loosely bound charge pairs with extended lifetime that impedes the recombination of charge carriers in the blend. The theoretical studies reveal that the molecular electrostatic potential (ESP) between PTO2 and IT-4F is large, and the induced intermolecular electric field may assist the charge generation. The results suggest OPVs have the potential for further improvement by judicious modulation of ESP.


Assuntos
Fontes de Energia Elétrica , Compostos Orgânicos/química , Energia Solar , Eletricidade Estática , Transporte de Elétrons , Fulerenos/química , Modelos Moleculares , Conformação Molecular , Polímeros/química
12.
Nat Mater ; 17(8): 703-709, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30013057

RESUMO

The open-circuit voltage of organic solar cells is usually lower than the values achieved in inorganic or perovskite photovoltaic devices with comparable bandgaps. Energy losses during charge separation at the donor-acceptor interface and non-radiative recombination are among the main causes of such voltage losses. Here we combine spectroscopic and quantum-chemistry approaches to identify key rules for minimizing voltage losses: (1) a low energy offset between donor and acceptor molecular states and (2) high photoluminescence yield of the low-gap material in the blend. Following these rules, we present a range of existing and new donor-acceptor systems that combine efficient photocurrent generation with electroluminescence yield up to 0.03%, leading to non-radiative voltage losses as small as 0.21 V. This study provides a rationale to explain and further improve the performance of recently demonstrated high-open-circuit-voltage organic solar cells.

13.
Chem Rev ; 116(12): 7397-457, 2016 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-27251307

RESUMO

Advances in the design and application of highly efficient conjugated polymers and small molecules over the past years have enabled the rapid progress in the development of organic photovoltaic (OPV) technology as a promising alternative to conventional solar cells. Among the numerous OPV materials, benzodithiophene (BDT)-based polymers and small molecules have come to the fore in achieving outstanding power conversion efficiency (PCE) and breaking 10% efficiency barrier in the single junction OPV devices. Remarkably, the OPV device featured by BDT-based polymer has recently demonstrated an impressive PCE of 11.21%, indicating the great potential of this class of materials in commercial photovoltaic applications. In this review, we offered an overview of the organic photovoltaic materials based on BDT from the aspects of backbones, functional groups, alkyl chains, and device performance, trying to provide a guideline about the structure-performance relationship. We believe more exciting BDT-based photovoltaic materials and devices will be developed in the near future.


Assuntos
Fontes de Energia Elétrica , Compostos Orgânicos/química , Energia Solar , Tiofenos/química , Estrutura Molecular
14.
J Am Chem Soc ; 139(21): 7148-7151, 2017 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-28513158

RESUMO

A new polymer donor (PBDB-T-SF) and a new small molecule acceptor (IT-4F) for fullerene-free organic solar cells (OSCs) were designed and synthesized. The influences of fluorination on the absorption spectra, molecular energy levels, and charge mobilities of the donor and acceptor were systematically studied. The PBDB-T-SF:IT-4F-based OSC device showed a record high efficiency of 13.1%, and an efficiency of over 12% can be obtained with a thickness of 100-200 nm, suggesting the promise of fullerene-free OSCs in practical applications.

15.
J Am Chem Soc ; 139(21): 7302-7309, 2017 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-28497691

RESUMO

Fabricating organic solar cells (OSCs) with a tandem structure has been considered an effective method to overcome the limited light absorption spectra of organic photovoltaic materials. Currently, the most efficient tandem OSCs are fabricated by adopting fullerene derivatives as acceptors. In this work, we designed a new non-fullerene acceptor with an optical band gap (Egopt) of 1.68 eV for the front subcells and optimized the phase-separation morphology of a fullerene-free active layer with an Egopt of 1.36 eV to fabricate the rear subcell. The two subcells show a low energy loss and high external quantum efficiency, and their photoresponse spectra are complementary. In addition, an interconnection layer (ICL) composed of ZnO and a pH-neutral self-doped conductive polymer, PCP-Na, with high light transmittance in the near-IR range was developed. From the highly optimized subcells and ICL, solution-processed fullerene-free tandem OSCs with an average power conversion efficiency (PCE) greater than 13% were obtained.

16.
J Am Chem Soc ; 139(5): 1958-1966, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28081597

RESUMO

A new organic small molecule, DRTB-T, that incorporates a two-dimensional trialkylthienyl-substituted benzodithiophene core building block was designed and synthesized. DRTB-T has a band gap (Egopt) of 2.0 eV with a low-lying highest occupied molecular orbital (HOMO) level of -5.51 eV. Nonfullerene small-molecule solar cells consisting of DRTB-T and a nonfullerene acceptor (IC-C6IDT-IC) were constructed, and the morphology of the active layer was fine-tuned by solvent vapor annealing (SVA). The device showed a record 9.08% power conversion efficiency (PCE) with a high open-circuit voltage (Voc = 0.98 V). This is the highest PCE for a nonfullerene small-molecule organic solar cell (NFSM-OSC) reported to date. Our notable results demonstrate that the molecular design of a wide band gap (WBG) donor to create a well-matched donor-acceptor pair with a low band gap (LBG) nonfullerene small-molecule acceptor, as well as subtle morphological control, provides great potential to realize high-performance NFSM-OSCs.

17.
Angew Chem Int Ed Engl ; 56(11): 3045-3049, 2017 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-28145632

RESUMO

The design of narrow band gap (NBG) donors or acceptors and their application in organic solar cells (OSCs) are of great importance in the conversion of solar photons to electrons. Limited by the inevitable energy loss from the optical band gap of the photovoltaic material to the open-circuit voltage of the OSC device, the improvement of the power conversion efficiency (PCE) of NBG-based OSCs faces great challenges. A novel acceptor-donor-acceptor structured non-fullerene acceptor is reported with an ultra-narrow band gap of 1.24 eV, which was achieved by an enhanced intramolecular charge transfer (ICT) effect. In the OSC device, despite a low energy loss of 0.509 eV, an impressive short-circuit current density of 25.3 mA cm-2 is still recorded, which is the highest value for all OSC devices. The high 10.9 % PCE of the NBG-based OSC demonstrates that the design and application of ultra-narrow materials have the potential to further improve the PCE of OSC devices.

18.
Small Methods ; 8(2): e2300036, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37092533

RESUMO

To develop the low-cost nonfullerene acceptors (NFAs), two fully non-fused NFAs (TBT-2 and TBT-6) with ortho-bis((2-ethylhexyl)oxy)benzene unit and different side chains onto thiophene-bridges are synthesized through highly efficient synthetic procedures. Both acceptors show good planarity, low optical gaps (≈1.51 eV), and deep highest occupied molecular orbital levels (≤-5.77 eV). More importantly, the single-crystal structure of TBT-2 shows compact molecular arrangement due to the existence of intramolecular interactions between adjacent aromatic units and strong π-π stacking between intermolecular terminal groups. When the two acceptors are fabricated organic photovoltaic (OPV) cells by combining with a wide optical gap polymer donor, the TBT-6 with strong crystallization forms large domain sizes in bulk heterojunction (BHJ) blend. As a result, the TBT-6-based OPV cell shows a low power conversion efficiency (PCE) of 9.53%. In contrast, the TBT-2 with proper crystallization facilitates morphological optimization in the BHJ blend. Consequently, the TBT-2-based OPV cell gives an outstanding PCE of 13.25%, which is one of the best values among OPV cells with similar optical gaps. Overall, this work provides a practical molecular design strategy for developing high-performance and low-cost electron acceptors.

19.
Adv Mater ; 35(22): e2300360, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36930466

RESUMO

Multifunction-integrated semitransparent organic photovoltaic cells (STOPVs), with high power generation, colorful transmittance/reflectance, excellent ultraviolet (UV) protection, and thermal insulation, are fully in line with the concept of architectural aesthetics and photoprotection characteristics for building-integrated photovoltaic-window. For the indelible rainbow color photovoltaic window, one crucial issue is to realize the integration of these photons- and photoelectric-related multifunction. Herein, dynamic transmissive and reflective structural color controllable filters, with asymmetrical metal-insulator-metal (MIM) configurations (20 nm-Ag-HATCN-30 nm-Ag) through machine learning, are deliberately designed for colorful STOPV devices. This endows the resultant integrated devices with ≈5% enhanced power conversion efficiency (PCE) than the bare-STOPVs, gifted UV (300-400 nm) blocking rates as high as 93.5, 94.1, 90.2, and 94.5%, as well as a superior infrared radiation (IR) (700-1400 nm) rejection approaching 100% for transparent purple-, blue-, green- and red-STOPV cells, respectively. Most importantly, benefiting from the photonic recycling effect beyond microcavity resonance wavelength, a reported quantum utilization efficiency (QUE) as high as 80%, is first presented for the transparent-green-STOPVs with an ultra-narrow bandgap of 1.2 eV. These asymmetrical Febry-Pérot transmissive and reflective structural color filters can also be extended to silicon- and perovskite-based optoelectric devices and make it possible to integrate additional target optical functions for multi-purpose optoelectric devices.

20.
Adv Mater ; 35(9): e2208926, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36537085

RESUMO

All-polymer organic photovoltaic (OPV) cells possessing high photovoltaic performance and mechanical robustness are promising candidates for flexible wearable devices. However, developing photoactive materials with good mechanical properties and photovoltaic performance so far remains challenging. In this work, a polymer donor PBDB-TF with a high weight-average molecular weight (Mw ) is introduced to enable highly efficient all-polymer OPV cells featuring excellent mechanical reliability. By incorporating the high-Mw PBDB-TF as a third component into the PBQx-TF:PY-IT blend, the bulk heterojunction morphology is finely tuned with a more compact π-π stacking distance, affording efficient pathways for charge transport as well as mechanical stress dissipation. Hence, all-polymer OPV cells based on the ternary blend film demonstrate a maximum power conversion efficiency (PCE) of 18.2% with an outstanding fill factor of 0.796. The flexible OPV cell delivers a decent PCE of 16.5% with high mechanical stability. These results present a promising strategy to address the mechanical properties and boost the photovoltaic performance of all-polymer OPV cells.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa