RESUMO
Antidepressant duloxetine has been shown protective effect on indomethacin-induced gastric ulcer, which was escorted by inflammation in the gastric mucosa. Cytokines are the principal mediators of inflammation. Thus, by screening the differential expression of cytokines in the gastric mucosa using cytokine array at 3 h after indomethacin exposure, when the gastric ulcer began to format, we found that indomethacin increased cytokines which promoted inflammation responses, whereas duloxetine decreased pro-inflammatory cytokines increased by indomethacin and increased RANTES expression. RANTES was consistently increased by pretreated with both 5 mg/kg and 20 mg/kg duloxetine at 3 h and 6 h after indomethacin exposure in male rats. Selective blockade of RANTES-CCR5 axis by a functional antagonist Met-RANTES or a CCR5 antagonist maraviroc suppressed the protection of duloxetine. Considering the pharmacologic action of duloxetine on reuptake of monoamine neurotransmitters, we examined the serotonin (5-HT), norepinephrine and dopamine contents in the blood and discovered 20 mg/kg duloxetine increased 5-HT levels in platelet-poor plasma, while treatment with 5-HT promoted expression of RANTES in the gastric mucosa and alleviated the indomethacin-induced gastric injury. Furthermore, duloxetine activated PI3K-AKT-VEGF signaling pathway, which was regulated by RANTES-CCR5, and selective inhibitor of VEGF receptor axitinib blocked the prophylactic effect of duloxetine. Furthermore, duloxetine also protected gastric mucosa from indomethacin in female rats, and RANTES was increased by duloxetine after 6 h after indomethacin exposure too. Together, our results identified the role of cytokines, particularly RANTES, and the underlying mechanisms in gastroprotective effect of duloxetine against indomethacin, which advanced our understanding in inflammatory modulation by monoamine-based antidepressants.
Assuntos
Quimiocina CCL5 , Cloridrato de Duloxetina , Mucosa Gástrica , Indometacina , Proteínas Proto-Oncogênicas c-akt , Ratos Sprague-Dawley , Serotonina , Transdução de Sinais , Úlcera Gástrica , Fator A de Crescimento do Endotélio Vascular , Animais , Cloridrato de Duloxetina/farmacologia , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/patologia , Mucosa Gástrica/metabolismo , Masculino , Indometacina/toxicidade , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quimiocina CCL5/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ratos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/prevenção & controle , Úlcera Gástrica/patologia , Úlcera Gástrica/metabolismo , Serotonina/metabolismo , Fosfatidilinositol 3-Quinases/metabolismoRESUMO
Duloxetine has been shown to produce gastroprotective effect against gastric ulcer induced by water immersion restraint stress (WIRS) via modulation of NADPH oxidases in the gastric mucosa and neurometabolites of central nucleus of amygdala. However, the underlying mechanism based on the basic pharmacological function of duloxetine-regulation on serotonin (5-HT) and norepinephrine (NE) remains unclear. Here, we found that 5-HT level in platelet-poor plasma (PPP) was decreased but NE level in plasma was increased in rats exposed to WIRS, while pretreatment with duloxetine increased 5-HT in PPP dose-dependently and decreased NE in plasma of rats after WIRS. We further showed that depletion of 5-HT by 4-chloro-DL-phenylalanine (PCPA) aggravated gastric mucosa damage and supplement of 5-HT alleviated gastric ulcers induced by WIRS. Blockade of NE receptors also mitigated the stress gastric ulcers. Using adrenalectomy and chemical blocking, we identified that it was NE from adrenal medulla rather than sympathetic nerve that was more critical in the gastroprotection of duloxetine, and intriguingly, glucocorticoid did not make a difference in WIRS-provoked gastric ulcers as a classic stress hormone. Together, our work demonstrated prophylactic protection of duloxetine from the stress gastric ulcer depended on enhancing peripheral 5-HT content and reducing NE from adrenal medulla, which provided insight into treatments of WIRS-induced gastric ulcer.
Assuntos
Norepinefrina , Úlcera Gástrica , Ratos , Animais , Cloridrato de Duloxetina/farmacologia , Cloridrato de Duloxetina/uso terapêutico , Serotonina , Úlcera Gástrica/etiologia , Úlcera Gástrica/prevenção & controle , Úlcera Gástrica/tratamento farmacológico , Mucosa GástricaRESUMO
Monoamine-based antidepressants can prophylactically protect against stress-induced gastric ulcers. Although the central nucleus of amygdala (CeA) has been shown to modulate the severity of stress ulcers, little is known about the molecular mechanisms underlying the gastroprotective effect of this kind of drugs. Here, we first used proton magnetic resonance spectroscopy, a non-invasive tool, to explore the change of neurometabolites of the CeA of rats pretreated with the duloxetine of selective serotonin-norepinephrine reuptake inhibitors during 6 h of water-immersion restraint stress (WIRS). Duloxetine decreased N-acetyl-aspartate/creatine ratio (NAA/creatine) in CeA after WIRS, which was paralleled by the amelioration of gastric lesions. Meanwhile, the gastric ulcer index was negatively correlated with reduced NAA/creatine. Furthermore, the intra-CeA infusion of NAA aggravated WIRS-induced gastric mucosa damage, which suggested the crucial role of reduced NAA. Western blotting was performed to identify the specific enzymes responsible for the change of the contents of NAA at 0.5 h/3 h/6 h after WIRS, considering the preventative gastric protection of duloxetine. The NAA-catabolizing enzyme aspartoacylase (ASPA) was the only enzyme downregulated by 0.5 h WIRS and upregulated by duloxetine. Moreover, overexpressing ASPA in CeA alleviated stress ulcers. Additionally, all of the other three monoamine-based antidepressants, the fluoxetine of selective serotonin reuptake inhibitors, the amitriptyline of tricyclic agents, and the moclobemide of MAOs, increased ASPA expression in CeA. Together, these results indicate that increasing ASPA to hydrolyze NAA in CeA is a common mechanism of gastroprotective effects against stress exerted by monoamine-based antidepressants, and ASPA is a shared target more than monoamine regulation for this kind of drugs.
RESUMO
Multiple kinds of monoamine-based antidepressants have been shown prophylactic effects in experimentally induced gastric ulcer. The loss of redox homeostasis plays a principle role in the development of peptic mucosal damage. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases are one of the most important sources of reactive oxygen species within the gastrointestinal tract. It is unclear whether there are some common NADPH oxidases modulated by monoamine-based antidepressants in different gastric mucosal damage models. We explored the effects of selective serotonin-norepinephrine reuptake inhibitor (SNRI) duloxetine on the reactive oxygen species production and antioxidant capacity in the gastric mucosa of water immersion restraint (WIRS) or indomethacin treated rats, and examined the role of NADPH oxidases in the protective effects. Pretreated duloxetine prevented the increase of gastric mucosal NADPH oxidase activity and NADPH oxidase inhibitor apocynin dose-dependently protected gastric mucosa from damage by the two factors. Furthermore, dual oxidase 2 (DUOX2) and NADPH oxidase4 (NOX4) are involved in the protective effects of duloxetine in both models. We then examined NADPH oxidases expression modulated by the other monoamine-based antidepressants including selective serotonin reuptake inhibitor (SSRIs) fluoxetine, tricyclic agent (TCAs) amitriptyline and monoamine oxidase inhibitor (MAOs) moclobemide in the two models, and all the three antidepressants reduced the DUOX2 expression in the gastric mucosa. So DUOX2 was a common modulator in the preventive effects of all the monoamine-based antidepressants on WIRS- and indomethacin-induced gastric lesion. Our work provided a peripheral joint molecular target for monoamine modulatory antidepressants, which may be helpful to reveal the mechanisms of this kind of drugs more than monoamine regulation.