Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(8)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37112087

RESUMO

The crystallization of polyethylene (PE) blends is a highly complex process, owing to the significant differences in crystallizability of the various PE components and the varying PE sequence distributions resulting from short- or long-chain branching. In this study, we examined both the resins and their blends through crystallization analysis fractionation (CRYSTAF) to understand the PE sequence distribution and differential scanning calorimetry (DSC) to investigate the non-isothermal crystallization behavior of the bulk materials. Small-angle X-ray scattering (SAXS) was utilized to study the crystal packing structure. The results showed that the PE molecules in the blends crystallize at different rates during cooling, resulting in a complicated crystallization behavior characterized by nucleation, co-crystallization, and fractionation. We compared these behaviors to those of reference immiscible blends and found that the extent of the differences is related to the disparity in crystallizability between components. Furthermore, the lamellar packing of the blends is closely associated with their crystallization behaviors, and the crystalline structure varies significantly depending on the components' compositions. Specifically, the lamellar packing of the HDPE/LLDPE and HDPE/LDPE blends is similar to that of the HDPE component owing to its strong crystallizability, while the lamellar packing of the LLDPE/LDPE blend is approximately an average of the two neat components.

2.
Polymers (Basel) ; 11(3)2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30960417

RESUMO

Crystal orientations, tear strength and shrinkage of Linear Low-Density PolyEthylene (LLDPE) films made with different processes (compressed, cast and blown) were investigated. The films were made with three different LLDPE resins, respectively, which have similar density and molecular weight but are made with different comonomers (1-butene, 1-hexene and 1-octene), in order to investigate if tear strength in Machine Direction (MD) of the LLDPE films made with different comonomer has similar dependence on crystal orientation. Our study indicates that the films made of 1-hexene and 1-octene based LLDPE resins have significantly higher intrinsic tear strength and less decrease in MD tear strength for a given film orientation. That is, for a given orientation in MD, the MD tear drops dramatically for films made with butene-based resin but much less decrease for the films made with hexene and octene-based resins. The shrinkage property at high temperature shows a good correlation with crystal orientation and the fraction of the crystals melted at this temperature.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa